Skip to main content

Asymptotic behaviour of the solutions to wave equation with nonlinear damping on the boundary

  • Hyperbolic Control Systems
  • Conference paper
  • First Online:
  • 2011 Accesses

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 111))

Abstract

We consider wave equation with the Neumann, nonlinear boundary conditions of the form: ∂y/∂η 1 Γ + γ(y t) ε 0, where γ is a monotone graph. We shall prove that if γ(0)=0, then the corresponding feedback system is strongly stable in the topology of H 1 × L 2. If instead γ(0)ε[−γ0.γ0], then we shall show, that the energy of all limit solutions is uniformly bounded (with respect to initial condition) by a constant C Ω γ0, where C Ω depends on the geometry of the domain Ω, but not on the norm of initial conditions.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Admas. Sobolev Spaces. New York: Academic Press, 1975.

    Google Scholar 

  2. H. Brezis. Problems unilateraul. J. Math pures et appl. 51, 1972, pp 1–168.

    Google Scholar 

  3. A.V. Balakrishnan. Applied Functional Analysis. 2nd ed. New York: Berlin Heidelberg Tokyo: Springer-Verlag, 1981.

    Google Scholar 

  4. —. September 1977. Boundary control for parabolic equations L-Q-R Theory. Proc. Confer. on Theory of Nonlinear Equations. Berlin: Akademia Verlag, 1978.

    Google Scholar 

  5. J.M. Ball, and M. Slemrod. 1979. Feedback stabilization of distributed semilinear control systems. Appl. Math. Optim. 5:169–79.

    Google Scholar 

  6. G. Chen. 1981. A Note on boundary stabilization of the wave equation. SIAM J. Contr. Optim. 19:106–13.

    Google Scholar 

  7. G. Chen, and H.-K. Wang. Asymptotic behavior of solutions on the one-dimensional wave equations with a nonlinear elastic dissipative boundary condition. Manuscript.

    Google Scholar 

  8. M.G. Crandall, and A. Pazy. 1969. Semigroups of nonlinear contractions and dissipative sets. J. Funct. Anal. 3:376–418.

    Google Scholar 

  9. C.M. Defermos, and M. Slemrod. 1973. Asymptotic behavior of nonlinear contraction semigroups. J. Funct. Anal. 13:97–106.

    Google Scholar 

  10. J. Lagnese. 1983. Decay of solutions of wave equations in a bounded region with boundary dissipation. J. Diff. Equations 50, 2:163–82.

    Google Scholar 

  11. J.-L. Lions. Controlabilité exacte de systemes distribués: remarque sur la theorie generale et les applications. Proc. Seventh International Confer. on Analysis and Optimization of Systems. Antibes, France, June 25–27, 1986, pp. 1–13. Lecture Notes CIS. Berlin Heidelberg New York Tokyo: Springer-Verlag. Forthcoming.

    Google Scholar 

  12. I. Lasiecka, J.-L. Lions, and R. Triggiani. 1986. Nonhomogeneous boundary value problems for second-order hyperbolic generators. J. de Math. Pures et Appliques 65:149–92.

    Google Scholar 

  13. J.-L. Lions, and E. Magenes. Nonhomogeneous Boundary Value Problems and Applications, I, II. Berling Heidelberg New York: Springer-Verlag, 1972.

    Google Scholar 

  14. J.-L. Lions, and G. Stampacchia. 1967. Variational inequalities. Comm. Pure Appl. Math., vol. 20:493–519.

    Google Scholar 

  15. I. Lasiecka, and R. Triggiani. Forthcoming. Uniform exponential energy decay in a bounded region with L 2(0, ∞; L 2(Γ))-feedback control in the Dirichlet boundary conditions. J. Diff. Equations.

    Google Scholar 

  16. J. McLaughin, and M. Slemrod. 1986. Scanning control of a vibrating string. Appl. Math. Optim. 14:27–49.

    Google Scholar 

  17. M. Slemrod. 1976. Stabilization of boundary control systems. J. Diff. Equations 22:402–15.

    Google Scholar 

  18. — Feedback stabilization of du/dt=Au+Bf in Hilbert space when ∥ f∥ ≤ 1. preprint.

    Google Scholar 

  19. R. Triggiani. Wave equations on a bounded domain with boundary dissipation: an operator approach. In this volume, pp. 111.

    Google Scholar 

  20. —. Exact boundary controllability in L 2(ΩH −1 (Ω) of the wave equation with Dirichlet boundary control on a portion of a boundary and related problems. Preprint, September 1986. Submitted for publication.

    Google Scholar 

  21. —. 1977. A cosine operator approach to modelling L 2(0, T; L 2(Γ)) boundary input problems for hyperbolic systems. Proc. Eighth IFIP Confer. on Optimization Techniques, University of Wurzburg, The Federal Republic of Germany, September 1977. Lecture Notes CIS-M6, 380–90. Berlin Heidelberg: New York: Springer-Verlag, 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

A. Bensoussan J. L. Lions

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag

About this paper

Cite this paper

Lasiecka, I. (1988). Asymptotic behaviour of the solutions to wave equation with nonlinear damping on the boundary. In: Bensoussan, A., Lions, J.L. (eds) Analysis and Optimization of Systems. Lecture Notes in Control and Information Sciences, vol 111. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0042237

Download citation

  • DOI: https://doi.org/10.1007/BFb0042237

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-19237-4

  • Online ISBN: 978-3-540-39161-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics