Skip to main content

On boundary controllability of volterra integrodifferential equations in Hilbert spaces

  • Conference paper
  • First Online:
Distributed Parameter Systems

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 102))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Curtain, R.F., A.J. Pritchard, Infinite dimensional linear system theory, Lecture Notes in Control and Informatin Sciences 8, Springer-Verlag 1978.

    Google Scholar 

  2. Cushing, J.M., Integrodifferential equations and delay models in population dynamics, LN in Biomath., 20 (1977), Springer-Verlag.

    Google Scholar 

  3. Desch, G.W., and R.C. Grimmer, Initial boundary value problems for integro-differential equations, J. of Int. Equ., 10 (1985), 73–97.

    Google Scholar 

  4. Doetsch, G., Handbuch der Laplace-Transformation Band I (1950), Birkhäuser, Basel.

    Google Scholar 

  5. Faris, W.G., Self-adjoint operators, LN in Math., 433 (1975), Springer-Verlag.

    Google Scholar 

  6. Kato, T., Perturbation Theory for linear operators (1976), Springer-Verlag.

    Google Scholar 

  7. Lagnese, J., Some remarks on control and stabilization of plates, 3rd Inf. Conf. on Control of Distributed Parameter Systems, Vorau, Austria (1986).

    Google Scholar 

  8. Lasiecka, I., R. Triggiani, A cosine operator approach to modelling I2 (0,T,I2 (Γ))-boundary input hyperbolic equations, Appl. Math. Opt., 7 (1981).

    Google Scholar 

  9. Leugering, G., Boundary controllability of a viscoelastic beam, Applicable Analysis 23 (1986), 119–137.

    Google Scholar 

  10. Leugering, G., Exact boundary controllability of an integrodifferential equation, J. Appl., Math. and Optim. 15 (1987), 223–250.

    Google Scholar 

  11. Lions, J.L., Controlabilite exacte des systemes distribues: remarques sur la theorie generale et les applications, Analysis and Optimization (Bensoussan, Lions, Eds). Proc. of the 7th Inf. Conf. on Analysis and Optim. of Systems, 6.25–27 (1986), Antibes, (1986) Springer-Verlag.

    Google Scholar 

  12. Narukawa, K., Boundary value control of thermo-elastic systems, Hirosh. Math. J., 13 (1983), 227–272.

    Google Scholar 

  13. Nečas, J. Les méthodes directes en théorie des équations elliptiques, Masson et ci. editeurs, 1967.

    Google Scholar 

  14. Zabczyk, J., Remarks on the algebraic Riccati equation in Hilbert spaces, Appl. Math. and Opt., 2/3 (1976), 251–258.

    Google Scholar 

Download references

Author information

Authors and Affiliations


Editor information

Franz Kappel Karl Kunisch Wilhelm Schappacher

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag

About this paper

Cite this paper

Leugering, G. (1987). On boundary controllability of volterra integrodifferential equations in Hilbert spaces. In: Kappel, F., Kunisch, K., Schappacher, W. (eds) Distributed Parameter Systems. Lecture Notes in Control and Information Sciences, vol 102. Springer, Berlin, Heidelberg.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-18468-3

  • Online ISBN: 978-3-540-47981-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics