Advertisement

Stochastic calculus of variations revisited

  • Kunio Yasue
Conference paper
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 78)

Keywords

Stochastic Process Quantum Mechanic Stochastic Differential Equation Particle Trajectory Stochastic Variation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. Nelson, "Quantum Fluctuation," (Princeton University Press, Princeton, 1985).Google Scholar
  2. [2]
    K. Yasue, J. Funct. Anal. 41 (1981), 327.Google Scholar
  3. [3]
    K. Yasue, J. Math. Phys. 22 (1981), 1010.Google Scholar
  4. [4]
    K. Yasue, J. Math. Phys. 23 (1982), 1577.Google Scholar
  5. [5]
    K. Yasue, J. Funct. Anal. 51 (1983), 133.Google Scholar
  6. [6]
    J.-C. Zambrini, Doctoral thesis, University of Geneva, 1982.Google Scholar
  7. [7]
    J.-C. Zambrini and K. Yasue, Ann. Phys. (N.Y.) 143 (1982), 54.Google Scholar
  8. [8]
    J.-C. Zambrini, J. Math. Phys. 25 (1984), 1314.Google Scholar
  9. [9]
    J.-C. Zambrini and K. Yasue, Phys. Rev. Lett. 52 (1984), 2107.Google Scholar
  10. [10]
    J.-C. Zambrini, Intern. J. Theor. Phys., to be published.Google Scholar
  11. [11]
    W. A. Zheng and P. A. Meyer, Lecture Notes in Mathematics, Séminaire de Probabilités XVIII (1984), 223.Google Scholar
  12. [12]
    J.-C. Zambrini, private communication.Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Kunio Yasue
    • 1
  1. 1.Notre Dame Seishin University Notre Dame HallOkayamaJapan

Personalised recommendations