Advertisement

The application of distributed parameter state estimation theory to a metallurgical casting operation

  • F. K. Greiss
  • W. H. Ray
Control Of Distributed Parameters
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 2)

Abstract

A mathematical model for the continuous casting of mild steel was developed and compared with experimental data. This model was then used as a basis for a nonlinear state estimation algorithm which provides on-line estimates of the solidified crust thickness and solid temperature distribution based only on noisy steel surface measurements. The computational algorithm, which makes use of eigenfunction decomposition methods, was found to be computationally efficient, and the filter performed well under simulation, even in the face of large temperature measurement errors.

Keywords

Heat Transfer Coefficient Continuous Casting Molten Steel Mould Surface Continuous Casting Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Nomenclature

A,B,c,E,D,a

Eigen-coefficients

b′

Solid crust thickness

b

Dimensionless solid crust thickness

h

Heat transfer coefficient at mould wall

h

Heat transfer coefficient at liquid surface

H

Dimensionless heat transfer coefficient

k

Thermal conductivity

L

Latent heat of solidification

Distance from mould surface to liquidus line

L

Distance from the mould surface to its center

Puu,Pub,Pbu,Pbb

Differential sensitivities

R−1,R+,R0−1,Q

Weighting factors

r

Normalized distance from the mould surface

t

Time

T

Temperature

uS

Dimensionless temperature

uC

Casting speed

x

Distance below meniscus

z

Distance from the mould surface

α

Thermal diffusivity

λ

Eigenvalue

φ

Eigenfunction

ρ

Density

τ

Scaled time

ψ

Initial condition

Liquid region

m

Mushy region

Liq

Liquidus line

S

Solid region

Sol

Solidus line

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. H. Ray and J. H. Seinfeld, Automatica, 11, 509 (1975).Google Scholar
  2. 2.
    F. K. Greiss, MS Thesis, State University of N.Y. at Buffalo, Buffalo, New York (1976).Google Scholar
  3. 3.
    P. K. C. Wang, Adv. Control Systems, 1, 75 (1964).Google Scholar
  4. 4.
    P. K. C. Wang, Int. J. Control, 5, 317 (1967).Google Scholar
  5. 5.
    N. N. Golub, Proceedings First IFAC Symp. on Control of Dist. Parameter Systems, paper 12.2 Banff (1971).Google Scholar
  6. 6.
    J. L. Lions, ibid review paper No. 2, Banff (1971).Google Scholar
  7. 7.
    A. W. D. Hills, JISI, 203, 18 (1965).Google Scholar
  8. 8.
    E. A. Mizikar, Trans. Met. Soc. AIME, 239, 1747 (1967).Google Scholar
  9. 9.
    A. W. D. Hills, Trans. Met. Soc. AIME, 245, 1471 (1969).Google Scholar
  10. 10.
    J. Szekely and V. Stanek, Met. Trans., 1, 119 (1970).Google Scholar
  11. 11.
    J. Szekely and R. T. Yadoya, Met. Trans., 3, 2673 (1972).Google Scholar
  12. 12.
    J. Szekely and R. T. Yadoya, Met. Trans., 4, 1379 (1973).Google Scholar
  13. 13.
    A. A. Tzavaras, Symposium on Continuous Casting, Chicago, A.I.M.E., p. 197 (1973).Google Scholar
  14. 14.
    L. Nemethy et al., "Continuous Casting", ed. D. L. McBride and T. E. Dancy, proceedings of a conference sponsored by the Phys. Chem. of Steel Making Comm. TSAIME, 130 (1961).Google Scholar
  15. 15.
    S. K. Morton and F. Weinberg, JISI, 211, 13 (1973).Google Scholar
  16. 16.
    J. K. Brimacombe and F. Weinberg, JISI, 211, 24 (1973).Google Scholar
  17. 17.
    M. A. Soliman, private communication (1974).Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • F. K. Greiss
    • 1
  • W. H. Ray
    • 1
  1. 1.Department of Chemical EngineeringUniversity of WisconsinMadisonUSA

Personalised recommendations