Advertisement

Simulating binary trees on hypercubes

  • Burkhard Monien
  • I. Hal Sudborough
Simulation And Embedding Of Parallel Networks Invited Presentation
Part of the Lecture Notes in Computer Science book series (LNCS, volume 319)

Abstract

We describe how to embed an arbitrary binary tree with dilation 3 and O(1) expansion into a hypercube. (In fact, we show that all binary trees can be embedded into their optimal hypercube with dilation 3, provided that all binary trees with no more than B vertices, for some fixed number B, can be embedded with dilation 3.) We also show how to embed all binary trees into their optimal hypercube with dilation 5.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AR]
    R. Aleliunas and A. L. Rosenberg, ”On Embedding Rectangular Grids in Square Grids”, IEEE Trans. on Computers, C-31,9 (1982), pp. 907–913.Google Scholar
  2. [BMS]
    S. Bettayeb, Z. Miller, and I. H. Sudborough, ”Embedding Grids into Hypercubes”, these proceedings.Google Scholar
  3. [BI]
    S. N. Bhatt, and I. C. F. Ipsen, ”How to Embed Trees in Hypercubes”, Research Report YALEU/DCS/RR-443, Yale University, Dept. of Computer Science, 1985.Google Scholar
  4. [BCLR]
    S. Bhatt, F. Chung, T. Leighton, and A. Rosenberg, ”Optimal Simulation of Tree Machines”, Proc. 27th Annual IEEE Symp. Foundations of Computer Sci., Oct. 1986, pp. 274–282.Google Scholar
  5. [BCHLR]
    S. Bhatt, F. Chung, J.-W. Hong, T. Leighton, A. Rosenberg, ”Optimal Simulations by Butterfly Networks”, Proc. 20th Annual ACM Theory of Computing Symp., 1988, to appear.Google Scholar
  6. [C]
    M. Y. Chan, ”Dilation 2 Embedding of Grids into Hypercubes”, Tech. Report, Computer Science Program, Univ. Texas at Dallas, 1988.Google Scholar
  7. [CC]
    M. Y. Chan and F. Y. L. Chin, ”On Embedding Rectangular Grids in Hypercubes”, to appear in IEEE Trans. on Computers.Google Scholar
  8. [E]
    J. A. Ellis, ”Embedding Rectangular grids into Square Grids”, these proceedings.Google Scholar
  9. [HL]
    I. Havel and P. Liebl, ”One Legged Caterpillars Span Hypercubes”, J. Graph Theory, 10 (1986), pp. 69–76.MATHMathSciNetGoogle Scholar
  10. [H]
    I. Havel, ”On Hamiltonian Circuits and Spanning Trees of Hypercubes”, Cas. Pest. Mat. (in Czech.), 109 (1984), pp. 135–152.MATHMathSciNetGoogle Scholar
  11. [MSUW]
    B. Monien, G. Spenner, W. Unger, and G. Wechsung, “On the Edge Length of Embedding Caterpillars into Various Networks”, manuscript, Dept. of Math. and Computer Science, Univ. Paderborn, Paderborn, W. Germany, 1988.Google Scholar
  12. [N]
    L. Nebesky, ”On Cubes and Dichotomic Trees”, Cas. Pest. Mat. (in Czech.), 99 (1974), pp. 164–167.MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Burkhard Monien
    • 1
  • I. Hal Sudborough
    • 2
  1. 1.Math. and Computer ScienceUniversity of PaderbornPaderbornW. Germany
  2. 2.Computer Science ProgramUniversity of Texas at DallasRichardsonUSA

Personalised recommendations