Advertisement

SLP-IOR: A model management system for stochastic linear programming - system design -

  • P. Kall
  • J. Mayer
Conference paper
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 174)

Keywords

Stochastic Programming Stochastic Linear Programming Stochastic Programming Model Stochastic Programming Problem Stochastic Decomposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    BIRGE, J. R., WETS, R. J.-B.: "Designing approximation schemes for stochastic optimization problems, in particular for stochastic programs with recourse", Math. Programming Stud. 27 (1986) 54–102.Google Scholar
  2. [2]
    BIRGE, J. R., DEMPSTER, M. A. H., GASSMANN, H., GUNN, E., KING, A. J., WALLACE, S. W.: "A standard input format for multiperiod stochastic linear programs", IIASA Working Paper WP-87-118 (1987).Google Scholar
  3. [3]
    BISSCHOP, J., MEERAUS, A.: "On the development of a general algebraic modeling system in a strategic planning environment", Math. Programming Stud. 20 (1982) 1–29.Google Scholar
  4. [4]
    BORELL, C.: "Convex set-functions in d-space", Periodica Math. Hungarica 6 (1975) 111–136.Google Scholar
  5. [5]
    BONCZEK, R.H., HOLSAPPLE, C. W., WHINSTON, A. B.: "Foundations of decision support systems", Academic Press (1981).Google Scholar
  6. [6]
    BROOKE, A., KENDRICK, D., MEERAUS, A.: "GAMS. A User's Guide", The Scientific Press, (1988).Google Scholar
  7. [7]
    DANTZIG, G. B., GLYNN, P.W.: "Parallel processors for planning under uncertainty", Technical Report SOL 88-8R, Department of Operations Research, Stanford University, (1989).Google Scholar
  8. [8]
    DEÁK, I.: "Multidimensional integration and stochastic programming", in Ermoliev, Y., Wets, R., J.-B., (eds.) Numerical Techniques for Stochastic Optimization, Springer-Verlag Berlin (1988) 187–200.Google Scholar
  9. [9]
    DOLK, D. R.: "A generalized model management system for mathematical programming", ACM Transactions on Mathematical Software 12 (1986) 92–125.Google Scholar
  10. [10]
    DOLK, D.R.: "Model management systems for operations research: A prospectus", in Mathematical Methods for Decision Support, ed. G. Mitra, Springer (1988) 347–373.Google Scholar
  11. [11]
    DOLK, D. R., KONSYNSKI, B. R.: "Knowledge representation for model management", IEEE Transactions on Software Engineering SE-10 (1984) 619–627.Google Scholar
  12. [12]
    DRUD, A. S.: "Interfaces between modeling systems and solution algorithms" in Mathematical Methods for Decision Support, ed. G. Mitra, Springer (1988) 187–196.Google Scholar
  13. [13]
    EDWARDS, J.: "A proposed standard input format for computer codes which solve stochastic programs with recourse", in Ermoliev, Y., Wets, R., J.-B., (eds.) Numerical Techniques for Stochastic Optimization, Springer-Verlag, Berlin (1988) 215–227.Google Scholar
  14. [14]
    ERMOLIEV, Y.: "Stochastic quasigradient methods and their application to systems optimization", Stochastics 9 (1983) 1–36.Google Scholar
  15. [15]
    FOURER, R., GAY, D. M., KERNIGHAN, B. W.: "A modeling language for mathematical programming", Management Science 36 (1990) 519–554.Google Scholar
  16. [16]
    FRAUENDORFER, K.: "Solving SLP recourse problems with arbitrary multivariate distributions — The dependent case", Mathematics of Op. Res. 13 (1988) 377–394.Google Scholar
  17. [17]
    FRAUENDORFER, K.: "A simplicial approximation scheme for convex two-stage stochastic programming problems", Manuscript, IOR University of Zürich (1989).Google Scholar
  18. [18]
    FRAUENDORFER, K., KALL, P.: "A solution method for SLP recourse problems with arbitrary multivariate distributions — The independent case", Probl. Control & Inform. Th. 17 (1988) 177–205.Google Scholar
  19. [19]
    GAIVORONSKI, A.: "Interactive program SQG-PC for solving stochastic programming problems on IBM/XT/AT compatibles-User Guide", IIASA Working Paper WP-88-11, (1988).Google Scholar
  20. [20]
    GEOFFRION, A.M.: "An introduction to structured modeling", Management Science 33 (1987) 547–588.Google Scholar
  21. [21]
    HIGLE, J.L., SEN, S.: "Stochastic decomposition: an algorithm for two-stage linear programs with recourse", SIE Technical Report 87-7, University of Arizona, Tucson (1988).Google Scholar
  22. [22]
    HIGLE, J.L., SEN, S.: "Statistical verification of optimality conditions", SIE Technical Report, University of Arizona, Tucson (1988).Google Scholar
  23. [23]
    HUERLIMANN, T., KOHLAS, J.: "LPL: A structured language for linear programming modeling", OR Spectrum 10 (1988) 55–63.Google Scholar
  24. [24]
    KALL, P.: "Approximations to stochastic programs with complete fixed recourse", Numer. Math. 22 (1974) 333–339.Google Scholar
  25. [25]
    KALL, P.: "Stochastic linear programming", Springer-Verlag, Berlin, (1976).Google Scholar
  26. [26]
    KALL, P.: "Computational methods for solving two-stage stochastic linear programming problems", ZAMP 30 (1979) 261–271.Google Scholar
  27. [27]
    KALL, P.: "Stochastic programs with recourse: An upper bound and the related moment problem", ZOR 31 (1987) A119–A141.Google Scholar
  28. [28]
    KALL, P.: "On approximation and stability in stochastic programming", in Guddat, J. et al. (eds.) Parametric Optimization and Related Topics, Akademie-Verlag, Berlin (1987) 387–407.Google Scholar
  29. [29]
    KALL, P.: "Stochastic programming with recourse: Upper bounds and moment problems", in Guddat, J. et al. (eds.) Advances in Mathematical Optimization, Akademie-Verlag, Berlin (1988) 86–103.Google Scholar
  30. [30]
    KALL, P.: "An upper bound for SLP using first and total second moments", Preprint, IOR University of Zürich (1989).Google Scholar
  31. [31]
    KALL, P.: "A review on approximations in stochastic programming", Preprint, IOR University of Zürich (1989).Google Scholar
  32. [32]
    KALL, P.: "Solution methods in stochastic programming — A review-", Preprint, IOR University of Zurich (1990).Google Scholar
  33. [33]
    KALL, P., STOYAN, D.: Solving stochastic programming problems with recourse including error bounds", Math. Operationsforsch. Statist., Ser. Optimization 13 (1982) 431–447.Google Scholar
  34. [34]
    KALL, P., RUSZCZYNSKI, A., FRAUENDORFER, K.: "Approximation techniques in stochastic programming", in Ermoliev, Y., Wets, R., J.-B., (eds.) Numerical Techniques for Stochastic Optimization, Springer-Verlag, Berlin (1988) 33–64.Google Scholar
  35. [35]
    KELLER, E.: "GENSLP: A program for generating input for stochastic linear programs with complete fixed recourse", Manuscript, IOR University of Zürich (1984).Google Scholar
  36. [36]
    KING, A., J.: "Stochastic programming problems: Examples from the literature", in Ermoliev, Y., Wets, R., J.-B., (eds.) Numerical Techniques for Stochastic Optimization, Springer-Verlag, Berlin (1988) 543–567.Google Scholar
  37. [37]
    KOMÁROMI, É.: "A dual method for probabilistic constrained problems", Math. Programming Stud. 28 (1986) 94–112.Google Scholar
  38. [38]
    LENARD, M. L.: "Structured model management", in Mathematical Methods for Decision Support, ed. G. Mitra, Springer (1988) 375–391.Google Scholar
  39. [39]
    MARSTEN, R. E.: The design of the XMP linear programming library", ACM Transactions on Mathematical Software 7 (1981) 481–497.Google Scholar
  40. [40]
    MAYER, J.: "A nonlinear programming method for the solution of a stochastic programming model of A. Prékopa", in Prékopa, A. (ed.) Survey of Mathematical Programming, North-Holland, Vol. 2 (1979) 129–139.Google Scholar
  41. [41]
    MAYER, J.: "Probabilistic constrained programming: A reduced gradient algorithm implemented on PC", IIASA Working Paper WP-88-39 (1988).Google Scholar
  42. [42]
    McALLISTER, P. H., STONE, J. C., DANTZIG, G.B.: "An interactive model management system: User interface and system design" Systems Optimization Laboratory, Stanford University, Technical Report SOL 90-3 (1990)Google Scholar
  43. [43]
    MITRA, G.: "Models for decision making: An overview of problems, tools and major issues", in Mathematical Methods for Decision Support, ed. G. Mitra, Springer (1988) 17–53.Google Scholar
  44. [44]
    MURTAGH, B. A., SAUNDERS, M. A.: "Large scale linearly constrained optimization", Math. Programming 14 (1978) 41–72.Google Scholar
  45. [45]
    MURTAGH, B. A., SAUNDERS, M. A.: "A projected Lagrangian algorithm and its implementation for sparse nonlinear constraints", Math. Progr.Study 16 (1982) 84–117.Google Scholar
  46. [46]
    PRÉKOPA, A.: "Logarithmic concave measures with application to stochastic programming", Acta. Sci. Math. 32 (1971) 301–316.Google Scholar
  47. [47]
    PRÉKOPA, A.: "Eine Erweiterung der sogenannten Method der zulässigen Richtungen der nichtlinearen Optimierung auf den Fall quasikonkaver Restriktionen", Math. Operationsforsch. Statist., Ser. Optimization 5 (1974) 281–293.Google Scholar
  48. [48]
    PRÉKOPA, A., GANCZER, S., DEÁK, I., PATYI, K.: "The STABIL stochastic programming model and its experimental application to the electricity production in Hungary", in Dempster, M.A.H. (ed.): Stochastic Programming, Academic Press, London (1980) 369–385.Google Scholar
  49. [49]
    PRÉKOPA, A.: "Numerical solution of probabilistic constrained programming problems", in Ermoliev, Y., Wets, R., J.-B., (eds.) Numerical Techniques for Stochastic Optimization, Springer-Verlag, Berlin (1988) 123–139.Google Scholar
  50. [50]
    RUSZCZYNSKI, A.: "A regularized decomposition method for minimizing a sum of polyhedral functions", Math. Programming 35 (1986) 309–333.Google Scholar
  51. [51]
    SCHITTKOWSKI, K.: "EMP: An expert system for mathematical programming", Mathematisches Institut, Universität Bayreuth, (1987).Google Scholar
  52. [52]
    SCHRAGE, L., CUNNINGHAM, K.: "Demo LINGO/PC: Language for INteractive General Optimization, version 1.04a", LINDO Systems Inc., Chicago (1988).Google Scholar
  53. [53]
    SIMONS, R.: "Mathematical programming modeling using MGG", IMA Journal of Mathematics in Management 1 (1987) 267–276.Google Scholar
  54. [54]
    SPRAGUE, R.H., CARLSON, E. D.: "Building effective decision support systems", Prentice-Hall (1982)Google Scholar
  55. [55]
    STRAZICKY, B.: "On an algorithm for solution of the two-stage stochastic programming problem", Methods. Oper. Res. 19 (1974) 142–156.Google Scholar
  56. [56]
    STRAZICKY, B.: "TWOSTAGE: A code of a basis decomposition method for stochastic programming", IIASA Working Paper WP-87-82 (1987).Google Scholar
  57. [57]
    SZÁNTAI, T.: "Calculation of the multivariate distribution function values and their gradient vectors", IIASA Working Paper WP-87-82 (1987).Google Scholar
  58. [58]
    SZÁNTAI, T.: "A computer code for solution of probabilistic-constrained stochastic programming problems", in Ermoliev, Y., Wets, R., J.-B., (eds.) Numerical Techniques for Stochastic Optimization, Springer-Verlag, Berlin (1988) 229–235.Google Scholar
  59. [59]
    WETS, R. J-B.: "Solving stochastic programs with simple recourse I", Department of Mathematics, University of Kentucky, Lexington (1974).Google Scholar
  60. [60]
    WETS, R. J-B.: "Solving stochastic programs with simple recourse", Stochastics 10 (1983) 219–242.Google Scholar

Copyright information

© International Federation for Information Processing 1992

Authors and Affiliations

  • P. Kall
    • 1
  • J. Mayer
    • 1
  1. 1.Institute for Operations ResearchUniversity of ZurichSwitzerland

Personalised recommendations