Algebraic properties of loop invariants

  • Gerald Futschek
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 735)


A set P(DO, R) of all invariants that ensure termination and where the postcondition R is true after termination is defined for every loop DO and for every postcondition R. Complying with the corresponding properties required, these sets P(DO, R) induce a topology on wp(DO, R). The weakest precondition wp(DO, R) is the weakest invariant of DO with respect to R. The topology P(DO, R) has a non-trivial structure and contains arbitrary conjunctions of invariants.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Dij75]
    E.W.Dijkstra: Guarded commands, nondeterminacy and formal derivation of programs, Comm.ACM 18 (1975) 453–457.Google Scholar
  2. [Dij76]
    E.W.Dijkstra: A Discipline of Programming, Prentice Hall, Englewood Cliffs, NJ, 1976.Google Scholar
  3. [Dij90]
    E.W.Dijkstra, C.S.Scholten: Predicate Calculus and Program Semantics, Springer Verlag New York Inc., 1990.Google Scholar
  4. [Gries81]
    D. Gries: The Science of Programming, Springer Verlag New York Inc., 1981.Google Scholar
  5. [Hoare69]
    C.A.R. Hoare: An axiomatic basis for computer programming, Comm. ACM 12 (1969) 576–580.Google Scholar
  6. [Hoare87]
    C.A.R. Hoare, I.J. Hayes et al.: Laws of Programming, Comm. ACM 30 (1987) 672–686.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Gerald Futschek
    • 1
  1. 1.Institut für Softwaretechnik, Technische Universität WienVienna University of TechnologyViennaAustria

Personalised recommendations