Advertisement

On the contact-minimization-problem

  • Paul Molitor
Contributed Papers Distributed Algorithms
Part of the Lecture Notes in Computer Science book series (LNCS, volume 247)

Abstract

The contact minimization problem is the problem of determining which layers should be used for wiring the signal nets of a circuit, such that the total number of layer changes (called contacts or via holes) is minimized. In this paper we show how to use a polynomialtime algorithm to find a maximum matching for a graph to solve the contact minimization problem for two layers. Furthermore we show that the contact minimization problem for n layers is NP-complete for all fixed n≥3.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ba]
    F. Barahona: “Sur la complexité du problème du verre de spins” Rapport de Recherche 171, Octobre 1979, Université Scientifique Et Medicale et Institut National Polytechnique de Grenoble, Mathematiques Appliquées et Informatique.Google Scholar
  2. [BB]
    M. Brady, D. Brown: “VLSI Routing: Four Layers Suffice” Advances in Computing Research, vol. 2 pages 245–257, JAI Press Inc London.Google Scholar
  3. [CK]
    M. Ciesielski, E.Kinnen: “An Optimum Layer Assignment for Routing in IC's and PCB's” Proceedings of the 18th Design Automation Conference, June 1981, pp. 733–737.Google Scholar
  4. [Ga]
    H. Gabow: “Implementation of Algorithms for Maximum Matching on Non-Bipartite Graphs” Ph.D. Dissertation, Stanford University 1973.Google Scholar
  5. [GJ]
    M. Garey, D. Johnson: “Computers and Intractability: A Guide to the Theory of NP-completeness” W.H.Freeman & co., San Francisco, 1979Google Scholar
  6. [Ka]
    Y. Kajitani: “On Via Hole Minimization of Routing on a 2-layer Board” Proceedings of the ICCC 1980, pp.295–298Google Scholar
  7. [Li]
    W. Lipski: “An NP-complete problem related to three layer channel routing” Manuscript, Institute of Computer Science, PAS, Warsaw, Poland 1982.Google Scholar
  8. [ML]
    S. MacLane: “A combinatorial condition for planar graphs” Fundamenta Math. 28, 22–32 (1937)Google Scholar
  9. [Mo]
    P. Molitor: “Layer Assignment by Simulated Annealing” North-Holland, Microprocessing and Microprogramming 16 (1985), pp.345–350Google Scholar
  10. [Pi]
    R.Y.Pinter: “Optimal Layer Assignment for Interconnect” Proceedings of the ICCC 1982, pp.398–401Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • Paul Molitor
    • 1
  1. 1.Fachbereich 10, Universität des SaarlandesSaarbrückenFRG

Personalised recommendations