Reversal complexity of multicounter and multihead machines

  • Juraj Hromkovič
Contributed Papers Complexity
Part of the Lecture Notes in Computer Science book series (LNCS, volume 247)


It is proved that the family of languages recognized by one-way real-time nondeterministic multicounter machines with constant number of counter reversals is not closed under complementation.

The best known lower bound Ω(n1/3/log2n) on the complexity measure REVERSALS·SPACE·PARALLELISM of multihead alternating machines is improved to Ω(n1/2/log2n). Several strongest lower bounds for different complexity measures are direct consequences of this result.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chan, T.: Reversal complexity of counter machines. Proc. IEEE STOC 1981, IEEE, New York, pp.146–157.Google Scholar
  2. 2.
    Ďuriš, P.-Galil, Z.: On reversal bounded counter machines and on pushdown automata with a bound on the size of the pushdown store. Inform. Control 54, 3, 1982, 217–227.Google Scholar
  3. 3.
    Ďuriš, P.-Galil, Z.: A time-space tradeoff for language recognition. Math. Systems Theory 17, 1984, 3–12.Google Scholar
  4. 4.
    Ginsburg, S.: Algebraic and Automata — Theoretic Properties of Formal Languages. North-Holland Publ. Comp., Amsterdam 1975.Google Scholar
  5. 5.
    Greibach, S.A.: Remarks on blind and partially blind one-way multicounter machines. Theoret. Comput. Sci. 7, 1978, 311–324.Google Scholar
  6. 6.
    Hack, M.: Petri Net Languages, Computation Structures. Group Memo 124, Project MAC, MIT, 1975.Google Scholar
  7. 7.
    Hromkovič, J.: Hierarchy of reversal and zerotesting bounded multicounter machines. Proc. 11th MFCS'84 (M.P.Chytil, V.Koubek eds.), Lect. Notes in Comp. Science 176, Springer-Verlag 1984, 312–321.Google Scholar
  8. 8.
    Hromkovič, J.: Hierarchy of reversal bounded one-way multicounter machines. Kybernetika 22, 2, 1986, 200–206.Google Scholar
  9. 9.
    Hromkovič, J.: Tradeoffs for language recognition on parallel computing models. Proc. 13th ICALP'86 (L.Kott ed.), Lect. Notes in Comp. Science 226, Springer-Verlag 1986, pp. 157–166.Google Scholar
  10. 10.
    Hromkovič, J.: On the power of alternation in automata theory. J. Comput. System Sciences 31, 1, 1985, 28–39.Google Scholar
  11. 11.
    Ibarra, O.H.: Reversal-bounded multicounter machines and their decision problems. J. of ACM 25, 1978, 116–133.Google Scholar
  12. 12.
    Rosenberg, A.L.: On multihead finite automata. IBM J. R. and D. 10, 1966, 388–394.Google Scholar
  13. 13.
    Wagner, K. — Wechsung, G.: Computational Complexity. Mathematische Monographien, Band 19, VEB Deutscher Verlag der Wissenschaften, Berlin 1986.Google Scholar
  14. 14.
    Dymond, P.W. — Cook, S.A.: Hardware complexity and parallel computations. Proc. 21th Annual IEEE FOCS 1980, pp. 360–372.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • Juraj Hromkovič
    • 1
  1. 1.Dept. of Theoretical Cybernetics and Mathematical InformaticsComenius UniversityBratislavaCzechoslovakia

Personalised recommendations