Advertisement

Symmetries of cyclic extended goppa codes over Fq

  • J. A. Thiong-Ly
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 307)

Abstract

We use elements in the group PGL(2,qm) to define the location sets of cyclic extended Goppa Codes over Fq, where the lengths of the codes divide qm ± 1.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [0]
    E.R. Berlekamp and O. Moreno. "Extended double error correcting binary Goppa Codes are cyclic". IEEE Trans. Inform. Theory, Vol. II.19, pp. 817–818, nov. 1973.Google Scholar
  2. [1]
    V.D. Goppa. "A new class of linear error correcting codes". Prob. Peredach Inform. Vol. 6 no 3, pp. 24–30, Sept. 1970.Google Scholar
  3. [2]
    O. Moreno. "Symmetries of Binary Goppa Codes". IEEE Trans. Inform. Theory, Vol. II.25, no 5, pp. 609–612, sept. 1979.Google Scholar
  4. [3]
    K.K. Tzeng and K. Zimmermann. "On extending Goppa Codes to cyclic Codes". IEEE Trans. Inform. Theory, Vol. II.21, pp. 712–716, nov. 1975.Google Scholar
  5. [4]
    K.K. Tzeng and Chie Y. Yu. "Characterization theorems for extending Goppa Codes to cyclic codes". IEEE Trans. Inform. Theory, Vol. II.25, no 2, pp. 246–249, March 1979.Google Scholar
  6. [5]
    A.L. Vishnevetskii. "Cyclicity of extended Goppa Codes". Prob. Peredachi Inform., Vol. no 3, pp. 14–18, sept. 1982.Google Scholar
  7. [6]
    F.J. Mac Williams, N.J.A. Sloane. "The Theory of Error Correcting Codes". North-Holland, 1978.Google Scholar
  8. [7]
    H. Stichtenoth. "Geometric Goppa Codes of genus O and then Automorphism Groups". Preprint. Fachbereich 6 — Mathematik Universität — Gesamthochschule EssenGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • J. A. Thiong-Ly
    • 1
  1. 1.University of Toulouse le MirailToulouseFrance

Personalised recommendations