Advertisement

On s-sum-sets (s odd) and three-weight projective codes

  • Mercè Griera
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 307)

Abstract

We show that if θ is the set of coordinate forms of a three-weight linear projective code C(n,k), and if X-F*θ is a 5-sum-set then the three weights are in arithmetical progression, that is, w1=w2-A and w3=w2+ A with A a function which depends of the number of words of weight three in C(n,n-k). Furthermore we obtain some relations between s-sum-sets (s odd) and their parameters.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

V.-References

  1. (1).
    BLAKE "The Mathematical Theory of Coding" Academic Press. New York (1975)Google Scholar
  2. (2).
    CAMION P. "Difference sets in Elementary Abelian Groups" Les presses de l'Université de Montréal, Montréal. (1979)Google Scholar
  3. (3).
    COURTEAU B. and WOLFMANN J. "On triple-sum-sets and two or three weights codes" Discrete math. 50 (1984)Google Scholar
  4. (4).
    GRIERA M. and RIFA J. and HUGUET Li. "On s-sum-sets and projective codes" Lecture Notes in Computer Sciences, vol 229 pag 135–142 (1986)Google Scholar
  5. (5).
    GRIERA M. "Esquemes d'associació: Aplicació a teoria de codis" These: Universitat Autònoma de Barcelona. (1984)Google Scholar
  6. (6).
    WARD M. "The vanishing of the homogeneus product sum of the roots of a cubic" Duke Math., J.26, pag.553–562. (1959)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Mercè Griera
    • 1
    • 2
  1. 1.Department d'Informàtica, Facultat de'CiènciesUniversitat Autònoma de Barcelona, BellaterraBarcelonaEspanya
  2. 2.G.E.C.T., Université de Toulon et du VarLa GardeFrance

Personalised recommendations