Advertisement

Partial order logics for elementary net systems: State- and event-approaches

  • Sinachopoulos A. 
Selected Presentations
Part of the Lecture Notes in Computer Science book series (LNCS, volume 458)

Abstract

We give two kinds of specific axiomatics, one describing cases and the other describing actions of en-systems. These two axiomatics do not have the same expressive power, since contacts are not expressible in the action-based approach. The problem of globality and locality, as well as extensions of the given axiomatics to axiomatics describing processes are discussed.

Keywords

Partial Order Logics Next Operator Petri Nets Elementary Net Systems Specification Case Graphs Action Graphs Specific Axiomatics State Approach Action Approach 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BPM]
    BenAri,Pnueli,Manna: The Temporal Logic of Branching Time. Acta Informatica 20, 1983.Google Scholar
  2. [BF]
    Best,Fernandez: Notations and Terminology on Petri Net Theory. Arbeitspapiere der GMD 195, 1986.Google Scholar
  3. [BC]
    Boudol,Castellani: Concurrency and Atomicity. TCS 59 (1988).Google Scholar
  4. [BCG]
    Browe,Clarke,Grümberg: Characterizing Finite Kripke Structures by Temporal Logic. TCS 59 (1988).Google Scholar
  5. [Br1]
    Broy M.: Spezifikation und Entwurf komplexer, kausal vernetzter Systeme. Informatik-Fachberichte 187, Springer-Verlag 1988.Google Scholar
  6. [Br2]
    Broy M.: Requirement and Design Specification for Distributed Systems. LNCS 335, Springer-Verlag 1988.Google Scholar
  7. [Bur]
    Burgess J.: Basic Tense Logic. In: Handbook of Philosophical Logic, Vol. 2, Gabbay and Guenther (eds.), D. Reidel Publishing Company, 1984.Google Scholar
  8. [Cou]
    Courcelle B.: The Monadic Second Order Logic of Graphs: Definable Sets of Finite Graphs. LNCS 344, 1989.Google Scholar
  9. [Ch]
    Church A.: Introduction to Mathematical Logic, Vol. 1. Princeton University Press, 1956.Google Scholar
  10. [ES]
    Emerson,Srinivasan: Branching Time Temporal Logic. Linear Time, Branching Time and Partial Order in Logics and Models for Concurrency, Goos,Hartmanis (eds), LNCS 354, 1989.Google Scholar
  11. [Ko]
    Kozen D.: Results on the Propositional μ-calculus. TCS 27, 1983.Google Scholar
  12. [Krö]
    Kröger F.: Temporal Logic of Programs. EATCS Monographs on Theoretical Computer Science, Vol. 8, Springer-Verlag, 1987.Google Scholar
  13. [MM]
    Masini,Maggiolo-Schettini: Local and Global Time Logic. Universita degli Studi di Pisa, Dipartimento di Informatica, TR-5/88.Google Scholar
  14. [MP]
    Manna, Pnueli: Verification of Concurrent Programs: The Temporal Framework. In: The Correctness Problem in Computer Science. Boyer, Moore (eds.), International Lecture Series in Computer Science, Academic Press, New York, 1981.Google Scholar
  15. [NPW]
    Nielsen,Plotkin,Winskel: Petri Nets, Event Structures and Domains. TCS 13 (1981).Google Scholar
  16. [OL]
    Owicki, Lamport: Proving Liveness Properties of Concurrent Programs. ACM, Vol. 4, No. 3, July 1982.Google Scholar
  17. [Pel]
    Pelz E.: About the concurrent behaviour of EN systems: definability and closure results. 9th European Workshop on Application and Theory of Petri Nets. Venice, Italy, June 1988.Google Scholar
  18. [Pen]
    Penczek W.: A Temporal Logic for Event Structures. Fund. Inf. 11, 1988.Google Scholar
  19. [PW]
    Pinter,Wolper: A Temporal Logic for Reasoning about Partially Ordered Computations. Proceedings of the third ACM Symposium on Principles of Distributed Computing, Vancouver, Canada, 1984.Google Scholar
  20. [Rei1]
    Reisig W.: Petri Nets. An Introduction. EATCS Monographs in Computer Sciences, Vol. 4, Springer-Verlag, 1985.Google Scholar
  21. [Rei2]
    Reisig W.: Towards a Temporal Logic for True Concurrency. Arbeitspapiere der GMD 277, 1987.Google Scholar
  22. [Rei3]
    Reisig W.: Towards a temporal logic of causality and choice. Linear Time, Branching Time and Partial Order in Logics and Models for Concurrency, Goos, Hartmanis (Eds), LNCS 354, 1989.Google Scholar
  23. [Rei4]
    Reisig W.: Temporal Logic and Causality in Concurrent Systems. LNCS 335, Concurrency 88, Springer-Verlag, 1988.Google Scholar
  24. [Rei5]
    Reisig W.: A Report on the REX School/Workshop on Linear Time, Branching Time and Partial Order in Logics and Models for Concurrency. Bulletin of EATCS, No 36, October 1988.Google Scholar
  25. [Ro]
    Rozenberg G.: Behaviour of Elementary Net Systems. LNCS 254, Springer-Verlag, 1987.Google Scholar
  26. [Sin1]
    Sinachopoulos A.: Temporal Logics for Elementary Net Systems. Arbeitspapiere der GMD 353, 1988.Google Scholar
  27. [SD]
    Sinachopoulos,Devillers: Partial Order Logics for Axiomatizing Concurrent Systems. Submitted for publication, 1990.Google Scholar
  28. [Thi]
    Thiagarajan P.: Elementary Net Systems. LNCS 254, Springer-Verlag, 1987.Google Scholar
  29. [W]
    Winskel G.: Event structures. Proc. Advances in Petr Nets '86, LNCS 255, 1987.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Sinachopoulos A. 
    • 1
  1. 1.Laboratoire d'Informatique ThéoriqueUniversité Libre de BruxellesBruxellesBelgium

Personalised recommendations