Process algebra with a zero object

  • J. C. M. Baeten
  • J. A. Bergstra
Selected Presentations
Part of the Lecture Notes in Computer Science book series (LNCS, volume 458)


The object 0 acts as a zero for both sum and multiplication in process algebra. The constant δ, representing deadlock or inaction, is only a left zero for multiplication. We will call 0 predictable failure.

1980 Mathematics Subject Classification (1985 revision)

68Q45 68Q55 68Q65 68Q50 

1987 CR Categories

F.4.3 D.2.10 D.3.1 D.3.3 

Key words & Phrases

process algebra zero deadlock inaction failure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. J.C.M. Baeten & J.A. Bergstra [88],Global renaming operators in concrete process algebra, I&C 78, 1988, pp. 205–245.Google Scholar
  2. J.C.M. Baeten & J.A. Bergstra [90],Process algebra with zero object and nondeterminacy, report P9002, Programming Research Group, University of Amsterdam 1990.Google Scholar
  3. J.C.M. Baeten & R.J. van Glabbeek [87],Merge and termination in process algebra, in: Proc. 7th FST&TCS, Pune (K.V. Nori, ed.), Springer LNCS 287, 1987, pp. 153–172.Google Scholar
  4. J.C.M. Baeten, J.A. Bergstra & J.W. Klop [86],Syntax and defining equations for an interrupt mechanism in process algebra, Fund. Inf. IX, 1986, pp. 127–168.Google Scholar
  5. J.A. Bergstra & J.W. Klop [84a],Process algebra for synchronous communication, I&C 60, 1984, pp. 109–137.Google Scholar
  6. J.A. Bergstra & J.W. Klop [84b],The algebra of recursively defined processes and the algebra of regular processes, in: Proc. 11th ICALP, Antwerpen (J. Paredaens, ed.), Springer LNCS 172, 1984, pp. 82–95.Google Scholar
  7. J.A. Bergstra & J.W. Klop [85],Algebra of communicating processes with abstraction, TCS 37, 1985, pp. 77–121.Google Scholar
  8. J.A. Bergstra & J.W. Klop [86],Process algebra: specification and verification in bisimulation semantics, in: Math. & Comp. Sci. II (M. Hazewinkel, J.K. Lenstra & L.G.L.T. Meertens, eds.), CWI Monograph 4, North-Holland, Amsterdam, 1986, pp. 61–94.Google Scholar
  9. J.A. Bergstra & J.W. Klop [89],Process theory based on bisimulation semantics, in: Linear Time, Branching Time and Partial Order in Logics and Models for Concurrency (J.W. de Bakker, W.-P. de Roever & G. Rozenberg, eds.), Springer LNCS 354, 1989, pp. 50–122.Google Scholar
  10. R.J. van Glabbeek [87],Bounded nondeterminism and the approximation induction principle in process algebra, in: Proc. STACS 87 (F.J. Brandenburg, G. Vidal-Naquet & M. Wirsing, eds.), Springer LNCS 247, 1987, pp. 336–347.Google Scholar
  11. J.F. Groote & F.W. Vaandrager [89],Structured operational semantics and bisimulation as a congruence, extended abstract in: Proc. ICALP 89, Stresa (G. Ausiello, M. Dezani-Ciancaglini & S. Ronchi Della Rocca, eds.), Springer LNCS 372, 1989, pp. 423–438. Full version to appear in I&C.Google Scholar
  12. J.F. Groote [90],Transition system specifications with negative premises, report CSR8950, Centre for Math. & Comp. Sci. 1990. To appear in Proc. CONCUR'90, Springer LNCS.Google Scholar
  13. C.A.R. Hoare [85],Communicating sequential processes, Prentice Hall International, 1985.Google Scholar
  14. R. Milner [80],A calculus for communicating systems, Springer LNCS 92, 1980.Google Scholar
  15. R. Milner [89],Communication and concurrency, Prentice Hall International, 1989.Google Scholar
  16. E.-R. Olderog & C.A.R. Hoare [86],Specification-oriented semantics for communicating processes, Acta Informatica 23, 1986, pp. 9–66.Google Scholar
  17. A. Ponse & F.-J. de Vries [89],Strong completeness for Hoare logics of recursive processes: an infinitary approach, report CS-R8957, Centre for Math. & Comp. Sci., Amsterdam 1989.Google Scholar
  18. M. Rem [87],Trace theory and systolic computations, in: Proc. PARLE Vol. I (J.W. de Bakker, A.J. Nijman & P.C. Treleaven, eds.), Springer LNCS 258, 1987, pp. 14–33.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • J. C. M. Baeten
    • 1
  • J. A. Bergstra
    • 2
    • 3
  1. 1.Department of Software TechnologyCentre for Mathematics and Computer ScienceAmsterdamThe Netherlands
  2. 2.Programming Research GroupUniversity of AmsterdamAmsterdamThe Netherlands
  3. 3.Department of PhilosophyState University of UtrechtUtrechtThe Netherlands

Personalised recommendations