A new proposal of concurrent process calculus

  • Salvador Lucas
  • Javier Oliver
Contributed Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1175)


In this paper, we present a new calculus to model concurrent systems, the Parallel Label-Selective λ-calculus. This calculus integrates the (functional) expressiveness of the λ-calculus in a unified framework with some powerful features for expressing communication actions and supporting the independence of processes which can be a main source of improvement when performing parallel computations.


Concurrency Extensions of λ-calculus Functional Programming Process Algebra 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Aït-Kaci and J. Garrigue. Label-Selective λ-Calculus: Syntax and Confluence. In R. K. Shyamasundar, editor, Foundations of Software Technology and Theoretical Computer Science, volume 761 of LNCS, pages 24–40. Springer-Verlag, Berlin. 1993.Google Scholar
  2. 2.
    H.P. Barendregt. The λ-calculus, its Syntax and Semantics, volume 103 of Studies in Logic and the Foundations of Mathematics. Elsevier Science Publishers, 1984 edition, Amsterdam, 1991.Google Scholar
  3. 3.
    M. Ben-Ari. Principles of Concurrent Programming. Englewood Cliffs: Prentice Hall, 1982.Google Scholar
  4. 4.
    G. Berry. Séquentialité de l'évaluation formelle des λ-expressions. In Proc. of 3-e Colloque International sur la Programmation, Dunod, Paris 1978.Google Scholar
  5. 5.
    G. Berry and G. Boudol. The Chemical Abstract Machine. In Proc. of 20'th ACM Annual Symp. on Principles of Programming Languages, pages 81–93, ACM Press, 1993.Google Scholar
  6. 6.
    N. Dershowitz and J.P. Jouannaud. Rewrite Systems. In J. van Leeuwen, editor. Handbook of Theoretical Computer Science, volume B: Formal Models and Semantics, pages 243–320. Elsevier, Amsterdam and the MIT Press, Cambridge, MA., 1990.Google Scholar
  7. 7.
    C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall International, Great Britain, 1985.Google Scholar
  8. 8.
    M.P. Jones and P. Hudak. Implicit and explicit parallel programming in Haskell. Technical report, YALEU/DCS/RR-982. Yale University, New Haven, Connecticut, USA, August 1993.Google Scholar
  9. 9.
    R. Lalement. Computation as Logic. Prentice Hall International, Great Britain. 1993.Google Scholar
  10. 10.
    R. Milner. A Calculus of Communicating Systems. LNCS 92, 1980. Springer Verlag.Google Scholar
  11. 11.
    R. Milner. The polyadic π-calculus: A tutorial. In F.L. Brauer, W. Bauer, and H. Schwichtenberg, editors, Logic and Algebra of Specifications. Springer-Verlag. Berlin, 1993.Google Scholar
  12. 12.
    J. Oliver and S. Lucas. Survey of concurrent calculi. In M.A. Fernández, J.M. García, J.A. Guerrero, and G. Moreno, editors, Nuevas tendencias en la Informática: Arquitecturas Paralelas y Programación Declarativa, pages 267–289, 1994.Google Scholar
  13. 13.
    S.L. Peyton-Jones. The implementation of functional programming languages. Prentice Hall International, Great Britain, 1987.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Salvador Lucas
    • 1
  • Javier Oliver
    • 1
  1. 1.Departamento de Sistemas Informáticos y ComputaciónUniversidad Politécnica de ValenciaValenciaSpain

Personalised recommendations