Advertisement

A scalable parallel algorithm for matching pursuit signal decomposition

  • G. Dodero
  • V. Gianuzzi
  • M. Moscati
  • M. Corvi
2. Computational Science
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1401)

Abstract

Signal processing with the Matching Pursuit algorithm requires a parallel, scalable and well balanced implementation in order to be effective. Starting from a careful analysis of execution times, a scalable parallelization, based on explicit message passing, is presented. It is based on a regular scattered decomposition of the dictionary, which allows workload balancing. An experimental implementation is discussed and related timings are presented.

Keywords

Matching Pursuit Scalability Load Balancing Data scattering Signal Processing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bergeaud F., Mallat, S.: Matching pursuit of image, Proc. ICIP, 1 (1993) 53–56.Google Scholar
  2. 2.
    Corvi M., Dodero G., Gianuzzi V., Moscati M., Parallelization Analysis for the matching pursuit, Proceedings SIMAI Conference, Salice Terme (Italy) 1996, 558–560.Google Scholar
  3. 3.
    ftp://ftp.cs.nyu.edu/pub/wave/software/mpp.tar.ZGoogle Scholar
  4. 4.
    v.Hanxleden R., Ridgway Scott L.,: Load balancing on message passing architectures, J. Parall. Distrib. Computing, 13 (1991) 312–324.Google Scholar
  5. 5.
    Mallat S., Zhang Z.,: Matching pursuit with time-frequency dictionaries, IEEE Trans. Signal Proc., 41 (1993) 3397.Google Scholar
  6. 6.
    Moscati M.,: Parallelization of the matching pursuit algorithm with Gabor dictionary for signal analysis, Master Thesis in Computer Science, University of Genova (in Italian) (1997).Google Scholar
  7. 7.
    Moscati M., Sacchetto G.,: Halting criteria and reconstruction quality: a comparison of GMP and WPMP. Tech. Rep. DISI-TR-97-09 (in Italian) (1997).Google Scholar
  8. 8.
    Sunderam V.S.,: PVM a framework for parallel distributed computing, Concurrency Pratice and Experience, 2(4) (1990) 315–339.Google Scholar
  9. 9.
    Uhl A.,: Adapted wavelet analysis on moderate parallel distributed memory MIMD architectures, Proc. IRREGULAR'95, LNCS 980, (1995), 275–283.Google Scholar
  10. 10.
    Zemla A., Wavelet transform computing on PVM, in Proceedings Parallel Scient. Comp. 94, LNCS 879, (1994), 534–546.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • G. Dodero
    • 1
  • V. Gianuzzi
    • 1
  • M. Moscati
    • 1
  • M. Corvi
    • 2
  1. 1.DISIUniversitá di GenovaGenovaItaly
  2. 2.Elsag-Bailey, R&DGenovaItaly

Personalised recommendations