Parallel extrapolation methods and their application in chemical engineering

  • Ulrich Nowak
  • Rainald Ehrig
  • Lars Oeverdieck
2. Computational Science
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1401)


We study the parallelization of linearly-implicit extrapolation methods for the solution of large scale systems of differential algebraic equations arising in a method of lines (MOL) treatment of partial differential equations. In our approach we combine a slightly overlapping domain decomposition together with a polynomial block Neumann preconditioner. Through the explicit computation of the matrix products of the preconditioner and the system matrix a significant gain in overall efficiency is achieved for medium-sized problems. The parallel algorithm exhibits a good scalability up to 32 processors on a Cray T3E. Preliminary results for computations on a workstation cluster are reported.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Arbenz, W. Gander: A Survey of Direct Parallel Algorithms for Banded Linear Systems. Technical Report TR 221, Inst. for Scientific Comp., ETH Zürich (1994).Google Scholar
  2. 2.
    K. Burrage: Parallel and Sequential Methods for Ordinary Differential Equations. Oxford University Press: New York (1996).Google Scholar
  3. 3.
    R.D. da Cunha, T. Hopkins: A parallel implementation of the restarted GMRES iterative algorithm for nonsymmetric systems of linear equations. Adv. Comp. Math. 2, pp. 261–277 (1994).Google Scholar
  4. 4.
    P. Deuflhard, U. Nowak: Extrapolation Integrators for Quasilinear Implicit ODE'S In: P. Deuflhard, B. Engquist (eds.): Large Scale Scientific Computing. Progress in Scientific Computing, Birkhaeuser 7, pp. 37–50 (1987).Google Scholar
  5. 5.
    P. Deuflhard, J. Lang, U. Nowak: Adaptive Algorithms in Dynamical Process Simulation. 8th Conference of the European Consortium for Mathematics in Industry, Kaiserslautern (1994).Google Scholar
  6. 6.
    P.F. Dubois, A. Greenbaum, G.H. Rodrigue: Approximating the inverse of a matrix for use in iterative algorithms on vector processors. Computing 22, pp. 257–268 (1979).Google Scholar
  7. 7.
    G. Eigenberger, U. Nieken: Katalytische Abluftreinigung: Verfahrenstechnische Aufgaben und neue Lösungen. Chem. Ing. Techn. 63(8), (1991).Google Scholar
  8. 8.
    E. Hairer, G. Wanner: Solving Ordinary Differential Equations II. — Stiff and Differential-Algebraic Problems. Springer Series in Computational Mathematics 14, Springer Verlag, Berlin-Heidelberg (1991)Google Scholar
  9. 9.
    U. Nowak: A fully Adaptive MOL-Treatment of Parabolic 1D-Problems with Extrapolation Techniques. Appl. Num. Math. 20, pp. 129–145 (1996).Google Scholar
  10. 10.
    L.R. Petzold: A Description of DASSL: a differential-algebraic system solver. Proc. IMACS World Congress, Montreal, Canada (1982).Google Scholar
  11. 11.
    G. Radicati di Brozolo, Y. Robert: Parallel conjugate gradient-like algorithms for solving sparse nonsymmetric linear systems on a vector multiprocessor. Parallel Computing 11, pp, 223–239 (1989).Google Scholar
  12. 12.
    T. Rauber, G. Rünger: Load Balancing for Extrapolation Methods on Distributed Memory Multiprocessors. In: Lecture Notes in Computer Science 817, pp. 277–288, Athen, July 1994. PARLE 1994, Springer.Google Scholar
  13. 13.
    Y. Saad, M.H. Schultz: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comp. 7, pp. 856–869 (1986).Google Scholar
  14. 14.
    K. Schaber, J. Körber: Formation of Aerosols in Absorption Processes for Exhaust Gas Purification. J. Aerosol. Sci. 22, pp. 5501–5504 (1991).Google Scholar
  15. 15.
    H.A. van der Vorst: BI-CGSTAB: A fast and smoothly converging variant of BI-CG for the solution of non-symmetric linear systems. SIAM J. Sci. Stat. Comp. 13, pp. 631–644 (1992).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Ulrich Nowak
    • 1
  • Rainald Ehrig
    • 1
  • Lars Oeverdieck
    • 1
  1. 1.Konrad-Zuse-Zentrum für InformationstechnikBerlinGermany

Personalised recommendations