Advertisement

The undecidability of typability in the Lambda-Pi-calculus

  • Gilles Dowek
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 664)

Abstract

The set of pure terms which are typable in the λII-calculus in a given context is not recursive. So there is no general type inference algorithm for the programming language Elf and, in some cases, some type information has to be mentioned by the programmer.

Keywords

Normal Form Letter Alphabet Post Problem Unification Problem Order Match 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Barendregt, Introduction to Generalized Type Systems, Journal of Functional Programming 1, 2 (1991) 125–154.Google Scholar
  2. 2.
    Th. Coquand, An Algorithm for Testing Conversion in Type Theory, Logical Frameworks, G. Huet and G. Plotkin (Eds.), Cambridge University Press (1991).Google Scholar
  3. 3.
    L. Damas, R. Milner, Principal Type-Scheme for Functional Programs, Proceedings of Principles of Programming Languages (1982).Google Scholar
  4. 4.
    G. Dowek, L'Indécidabilité du Filtrage du Troisième Ordre dans les Calculs avec Types Dépendants ou Constructeurs de Types (The Undecidability of Third Order Pattern Matching in Calculi with Dependent Types or Type Constructors), Comptes Rendus à l'Académie des Sciences I, 312, 12 (1991) 951–956.Google Scholar
  5. 5.
    G. Dowek, Third Order Matching is Decidable, Proceedings of Logic in Computer Science (1992) 2–10.Google Scholar
  6. 6.
    H. Geuvers, The Church-Rosser Property for βη-reduction in Typed Lambda Calculi, Proceedings of Logic in Computer Science (1992) 453–460.Google Scholar
  7. 7.
    W.D. Goldfarb, The Undecidability of the Second-Order Unification Problem, Theoretical Computer Science 13 (1981) 225–230.Google Scholar
  8. 8.
    R. Harper, F. Honsell, G. Plotkin, A Framework for Defining Logics, Proceedings of Logic in Computer Science (1987) 194–204.Google Scholar
  9. 9.
    G. Huet, The Undecidability of Unification in Third Order Logic, Information and Control 22 (1973) 257–267.Google Scholar
  10. 10.
    G. Huet, A Unification Algorithm for Typed λ-calculus, Theoretical Computer Science 1 (1975) 27–57.Google Scholar
  11. 11.
    G. Huet, Résolution d'Équations dans les Langages d'Ordre 1, 2, ..., ω, Thèse de Doctorat d'État, Université de Paris VII (1976).Google Scholar
  12. 12.
    G. Huet, B. Lang, Proving and Applying Program Transformations Expressed with Second Order Patterns, Acta Informatica 11 (1978) 31–55.Google Scholar
  13. 13.
    F. Pfenning, Logic Programming in the LF Logical Framework, Logical Frameworks, G. Huet and G. Plotkin (Eds.), Cambridge University Press (1991).Google Scholar
  14. 14.
    E. L. Post, A Variant of a Recursively Unsolvable Problem, Bulletin of American Mathematical Society 52 (1946) 264–268.Google Scholar
  15. 15.
    A. Salvesen, The Church-Rosser Theorem for Pure Type Systems with βη-reduction, Manuscript, University of Edinburgh (1991).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Gilles Dowek
    • 1
  1. 1.School of Computer ScienceCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations