ARC: An extended ATMS based on directed CAT-correct resolution

  • Pierre Tayrac
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 515)


This article describes an original resolution strategy (RCD: "Résolution CAT-correcte Dirigée") which is defined in propositionnal logic. This strategy represents a restriction of the application of "resolution principle" [12] and is specially designed to infer particular Horn clauses called CATCL ("Clauses à Antécédents Typés et Conséquents Limités").

We show that all significant clauses for an ATMS (Assumption-based Truth Maintenance System [4, 5, 6]) can be considered CATCL clauses under certain conditions and thus define an ATMS based on this resolution strategy, named ARC ("ATMS basé sur la Résolution CAT-correcte dirigée").

The ARC system retains all the advantages of conventional ATMS, allows the manipulation of general clauses (not only Horn clauses or disjunctions of assumptions), and integrates the new concept of "required label" which permits an improvement in performances.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Cayrol and Tayrac, Les résolutions CAT-correcte et CCT-correcte, la résolution CAT-correcte dans l'ATMS, "Colloque international sur l'informatique cognitive des organisations", Québec 89.Google Scholar
  2. [2]
    Cayrol et Tayrac, CAT-correct and CCT-correct resolution, CAT-correct resolution in ATMS, submited to Artificial Intelligence.Google Scholar
  3. [3]
    Chang and Lee, Symbolic Logic and Mechanical Theorem Proving, Computer Science and Applied Mathematics (1973).Google Scholar
  4. [4]
    de Kleer, An Assumption-based TMS, Artificial Intelligence 28 (1986) 127–162.Google Scholar
  5. [5]
    de Kleer, Extending the ATMS, Artificial Intelligence 28 (1986) 163–196.Google Scholar
  6. [6]
    de Kleer, Problem Solving with the ATMS, Artificial Intelligence 28 (1986) 197–224.Google Scholar
  7. [7]
    de Kleer, A general labeling algorithm for assumption-based truth maintenance, Proceedings of the National Conference on Artificial Intelligence, Saint Paul, MN (August 1988), 188–192.Google Scholar
  8. [8]
    Kean and Tsiknis, An incremental method for generating prime implicants/implicates, University of British Columbia Technical Report TR-88-16 (1988).Google Scholar
  9. [9]
    Kowalski, Studies in the completeness and efficiency of theorem proving by resolution, Ph.D. Thesis Univ. of Edinburgh, Scotland (1970).Google Scholar
  10. [10]
    Maier D. and Warren D. S., Computing with Logic. The Benjamin/Cummings Publishing Company, Inc. (1988).Google Scholar
  11. [11]
    Reiter and de Kleer, Foundations of assumption-based truth maintenance system. Preliminary report. Proc. of Amer. Assoc. for Artificial Intelligence Conf. (AAAI-87), Seatle, 183–188.Google Scholar
  12. [12]
    Robinson, Automatic deduction with Hyper-resolution. Intern. J. Comput. Math. 1 (227–234).Google Scholar
  13. [13]
    Tayrac, Etude de nouvelles stratégies de résolution, Application à l'ATMS, Ph.D. Thesis Univ. Paul Sabatier of Toulouse, France, June 1990.Google Scholar
  14. [14]
    Tison, Generalized Consensus Theory and Application to the Minimisation of Boolean Functions, IEEE Transaction on Electronic Computers, EC-16, 4, August 67, pp 446–456.Google Scholar
  15. [15]
    Tsiknis and Kean, Clause Management Systems, University of British Columbia, Technical report TR-88-21 (1988).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Pierre Tayrac
    • 1
    • 2
  1. 1.Institut de Recherche en Informatique de ToulouseUniversité Paul SabatierToulouse CédexFrance
  2. 2.Société CRIL, Innopole LabègeLabègeFrance

Personalised recommendations