Varietes de semigroupes et mots infinis

  • Dominique Perrin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 154)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eilenberg, S., Automata, Languages and Machines, Vol. A, Academic Press, 1974Google Scholar
  2. 2.
    Eilenberg, S., id., Vol. B, 1976.Google Scholar
  3. 3.
    Ladner, R., Applications of model-theoric games to discrete linear orders and finite automata, Inform. Contr. (1977), 33, 281–303.Google Scholar
  4. 4.
    Nivat, M., Perrin, D., Ensembles reconnaissables de mots bi infinis, 18th ACM Conf. on Theory of Computing, San Francisco, 1982, 47–59.Google Scholar
  5. 5.
    Schützenberger, M.P. A propos des relations rationnelles fonctionnelles, in Automata, Langages and Programming (M.NIVAT ed.) 103–114, North Holland, 1973.Google Scholar
  6. 6.
    Straubing, H., Aperiodic homomorphisms and the concatenation product of recognizable sets, J. Pure and Applied Algebra, 15, 1979, 319–327.Google Scholar
  7. 7.
    Thomas, W., Star-free regular sets of Ω-sequences, Inform. Contr. 42 (1979) 148–156.Google Scholar
  8. 8.
    Thomas, W., A combinatorial approach to the theory of Ω-automata, Inform. Contr. 48 (1981) 261–283.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • Dominique Perrin
    • 1
  1. 1.Laboratoire d'InformatiqueLITP Université de RouenMont-Saint-Aignan

Personalised recommendations