Advertisement

On the group complexity of a finite language

  • Evelyne Le Rest
  • Stuart W. Margolis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 154)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. 1.
    J. Brzozowski, Open Problems about regular languages, in normal Languages Perspectives and Open Problems, R. Book editor, Academic press, New York, 1980.Google Scholar
  2. 2.
    Y. Cesari, M.Vincent, Une caracterisation des mots périodiques, C.R.Acad. Sci. Paris, 286, A, 1175–1177.Google Scholar
  3. 3.
    J.P. Duval, Périodes et répétitions des mots du monoide libre, 1979 Theoret. Comp. Sci., 9, 17–26.Google Scholar
  4. 4.
    S. Eilenberg, Automata Languages and Machines, Vol.b, 1976, Academic Press, New York.Google Scholar
  5. 5.
    G. Lallement, Semigroups and Combinatorial applications, 1979, Wiley Interscience.Google Scholar
  6. 6.
    E. LeRest et M. LeRest, Thèse, 1979, Université de Rouen.Google Scholar
  7. 7.
    E. LeRest, et M. LeRest, Une représentation fidèle des groupes d'un monoide de relations sur un ensemble fini, Semigroup Foum 21, 167–172,1980.Google Scholar
  8. 8.
    E. LeRest et M. LeRest, Sur le calcul du monoÏde syntaxique d'un sous monoÏde finiment engendré, Semigroup Forum 21, 173–185,1980.Google Scholar
  9. 9.
    M. Lothaire, Combinatorics on Words, Encyclopedia of Mathematics and its Applications, Vol.17, Addison Wesley, Reading Mass., 1983.Google Scholar
  10. 10.
    S.W. Margolis, K-transformation semigroups and a Conjecture of Tilson, J.Pure and Appl. Alg., 17 (1980) 313–322.Google Scholar
  11. 11.
    S.W. Margolis, On the syntactic transformation semigroup of a language generated by a finite biprefix code, Theor. Comp. Sci. 21(1982) 225–230.Google Scholar
  12. 12.
    S.W. Margolis, J.E. Pin, On Varieties of rational languages and variable length codes II, to appear.Google Scholar
  13. 13.
    D.Perrin, Theorie des codes, to appear.Google Scholar
  14. 14.
    J.E. Pin, On varieties of rational languages and variable length codes I, J. Pure and Appl. Alg.(23) 1982, 169–196.Google Scholar
  15. 15.
    J.E. Pin, Sur le monoÏde syntactique de L lorsque L est un langage fini. Theor. Comp. Sci.Google Scholar
  16. 16.
    A. Salomaa, Jewels of Formal Language Theory, Computer Science Press, Rockville Maryland, 1981.Google Scholar
  17. 17.
    M.P. Schutzenberger, Une théorie algébrique du codage, C.R.Acad.Sci.Paris (242)1956, 862–864.Google Scholar
  18. 18.
    M.P. Schützenberger, A property of finitely generated submonoids, Algebraic Theory of Semigroups, G. Pollack Ed. North Holland (1979) 545–576.Google Scholar
  19. 19.
    B. Tilson, Depth decomposition theorem. Chap. XI in S. Eilenberg, Automata Languages and Machines, Vol. B. Academic Press, New York, 1976.Google Scholar
  20. 20.
    B. Tilson, Complexity of semigroups and morphisms, Chap. XII in S. Eilenberg, Automata Languages and Machines, Academic press, New York, 1976.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • Evelyne Le Rest
    • 1
  • Stuart W. Margolis
    • 2
  1. 1.Laboratoire d'informatiqueUniversité de RouenMont-Saint-AignanFrance
  2. 2.Department of Computer ScienceUniversity of VermontBurlingtonUSA

Personalised recommendations