Complexity of infinite trees

  • K. Indermark
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 154)


Rational schemes interpreted over derived algebras permit a simple algebraic analysis of higher type recursion. Their equivalence is characterized by infinite trees. Measuring their complexity by the size of finite subtrees we obtain a direct proof of the recursion hierarchy.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Bek 69]
    Bekić, H: Definable operations in general algebras, and the theory of automata and flowcharts, Research Report, IBM Lb., Vienna, 1969Google Scholar
  2. [Dam 82]
    Damm, W.: The IO-and OI-hierarchies Theoret. Comput. Sci. 20 (1982) 2, 95–208Google Scholar
  3. [Gog 77]
    Goguen, J.A. et. al.: Initial algebra semantics and continuous algebras Journal ACM 24 (1977) 1, 68–95Google Scholar
  4. [Ind 80]
    Indermark, K.: On rational definitions in complete algebras without rank Theoret. Comput. Sci. 21 (1982), 281–313Google Scholar
  5. [Mai 74]
    Maibaum, T.S.E.: A generalized approach to formal languages Journal Comp. Syst. Sci. 8 (1974), 409–439Google Scholar
  6. [Niv 72]
    Nivat, M.: Langages algébriques sur le magma libre et sémantique des schémas de programme in: Automata, Languages, and Programming (M. Nivat, ed.) North-Holland P.C. (1972), 293–308Google Scholar
  7. [Niv 75]
    Nivat, M.: On the interpretation of recursion polyadic program schemes-Symposia Matematica 15, Rome 1975, 255–281Google Scholar
  8. [Wag 71a]
    Wagner, E.G.: An algebraic theory of recursive definitions and recursive languages — Proc. 3rd ACM Symp. Theory of Computing (1971), 12–23Google Scholar
  9. [Wag 71b]
    Wagner, E.G.: Languages for defining sets in arbitrary algebras-Proc. IEEE Conf. SWAT 12 (1971), 192–201Google Scholar
  10. [Wan 72]
    Wand, M.: A concrete approach to abstract recursive definitions-in: Automata, Languages, and Programming (M. Nivat, ed.) North-Holland P.C. (1972), 331–344Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • K. Indermark
    • 1
  1. 1.Lehrstuhl für Informatik IIRWTH AachenAachenW.-Germany

Personalised recommendations