Advertisement

The equivalence problem for N.T.S. languages is deoidable

  • Géraud Senizergues
Contributed Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 145)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    O. BEERI, An improvment of Valiant's decision procedure for equivalence of deterministic finite-turn pushdown machines, Theoretical Computer Science 3 (1976), p. 305–320.Google Scholar
  2. [2]
    J. BERSTEL, Congruences plus que parfaites et langages algébriques, Séminaire d'Informatique Théorique L.I.T.P. (1975–1977) p. 123–147.Google Scholar
  3. [3]
    L. BOASSON, Dérivations et réductions dans les grammaires algébriquesGoogle Scholar
  4. [4]
    L. BOASSON, G. SENIZERGUES, N.T.S. Languages are congruential and deterministic, to appear.Google Scholar
  5. [5]
    R. BOOK, Confluent and other types of Thue systems, J.A.C.M. Vol. 29, No 1, January 1982, pp. 171–182.Google Scholar
  6. [6]
    S. EILENBERG, Automata, Languages and Machines, Ac. Press (1976)Google Scholar
  7. [7]
    C. FROUGNY, Thèse de 3ème Cycle, Une famille de langages algébriques congruenciels, Les langages à non-terminaux séparés, Paris 1980.Google Scholar
  8. [8]
    J.E. HOPCROFT, A.J. KORENJAC, Simple deterministic languages, I.E.E.E, 7 th Symp. on switching and automate theory, p. 36–46 (1966).Google Scholar
  9. [9]
    M. NIVAT, M. BENOIT, Congruences parfaites et quasi-parfaites, Séminaire Dubreil, 25ème année, 1971–72.Google Scholar
  10. [10]
    M. NIVAT, Y. COCHET, Une généralisation des ensembles de Dyck, Israel J. of Maths 9 (1971), p. 389–395.Google Scholar
  11. [11]
    M. OYAMAGUCHI, Y. INAGAKI, N. HONDA, The equivalence problem for real-time strict deterministic languages, Information and Control 45 (1980), p. 90–115.Google Scholar
  12. [12]
    G. SENIZERGUES, Thèse de 3ème cycle, Décidabilité de l'équivalence des grammaires N.T.S, Paris 1981.Google Scholar
  13. [13]
    L.G. VALIANT, The equivalence problem for deterministic finite-turn pushdown automata, Information and Control 25, (1974), p. 123–133.Google Scholar
  14. [14]
    L.G. VALIANT, M.S. PATERSON, Deterministic one-counter automata, J. Computer System Science 10, p. 340–350.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1982

Authors and Affiliations

  • Géraud Senizergues
    • 1
  1. 1.Université de Rennes I et L.I.T.P.France

Personalised recommendations