Quasioptimal control and stabilization at random perturbations

  • V. M. Alexandrov
Optimal Control: Ordinary And Delay Differential Equations
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 22)


The permanence of the switching moments of the program and correction controls constitutes the main difference and peculiarity of the suggested algorithm. The switching moments and the weight coefficients are found a priori and then inserted in the control device. The absence of calculations in the control process gives us the possibility to use this method for controlling high-speed dynamic processes described by the systems of linear differential equations of higher order with a large number of controlling parameters.


Weight Coefficient Phase Coordinate Switching Moment Quasioptimal Control Random Valu 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Л.С.Понтрягин, В.Г.Болтянский, Р.В.Гамкрелид 3e, Е.Ф.Мищенко. Математическая теория оптимальных процессов. Изд. “Наука”, М., 1969.Google Scholar
  2. 2.
    В.М.Александров. Об одном подходе приближенного решения задач оптимального управления. В сб. “Оптимизация динамических систем”, Йзд. БГУ, Минск, 1978.Google Scholar
  3. 3.
    В.М.Александров. Квазиоптимальные процес7qsы в автоматических системах. Йзвестия Сибирского отделения АН СССР, серия технических наук, 1975, вып. 3, No. 13.Google Scholar
  4. 4.
    Е.Г.Гольдштейн. Выпуклое программиро7qvание. Йзд. “Наука”, М., 1970.Google Scholar
  5. 5.
    Д.Химмельблау. Грикладное нелинейное програм7qmирование. Йзд. “Мир”, М., 1975.Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • V. M. Alexandrov
    • 1
  1. 1.Institute of MathematicsNovosibirskUSSR

Personalised recommendations