Advertisement

The complexity of the coverability, the containment, and the equivalence problems for commutative semigroups

  • Ulla Koppenhagen
  • Ernst W. Mayr
Technical Contributions
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1279)

Abstract

In this paper, we present optimal decision procedures for the coverability, the containment, and the equivalence problems for commutative semigroups. These procedures require at most space 2c·n, where n is the size of the problem instance, and c is some problem independent constant. Our results close the gap between the 2c′-n-log-n space upper bound, shown by Rackoff for the coverability problem and shown by Huynh for the containment and the equivalence problems, and the exponential space lower bound resulting from the corresponding bound for the uniform word problem established by Mayr and Meyer.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Bir67]
    A.P. Biryukov. Some algorithmic problems for finitely defined commutative semigroups, Siberian Math. J., 8:384–391, 1967.Google Scholar
  2. [Buc65]
    B. Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenrings nach einem nulldimensionalen Polynomideal. Ph.d. thesis, University of Innsbruck, 1965.Google Scholar
  3. [Dub90]
    T.W. Dubé. The structure of polynomial ideals and Gröbner bases. SIAM J. Comput., 19(4):750–773, 1990.CrossRefGoogle Scholar
  4. [ES69]
    S. Eilenberg and M.P. Schützenberger. Rational sets in commutative monoids. J. Algebra, 13:173–191, 1969.CrossRefGoogle Scholar
  5. [Hac76]
    M. Hack. The equality problem for vector addition systems is undecidable. Theor. Comput. Sci., 2:77–95, 1976.CrossRefGoogle Scholar
  6. [Her26]
    G. Hermann. Die Frage der endlich vielen Schritte in der Theorie der Polynomideale. Math. Ann., 95:736–788, 1926.CrossRefMathSciNetGoogle Scholar
  7. [Huy85]
    D.T. Huynh. The complexity of the equivalence problem for commutative semigroups and symmetric vector addition systems. In Proceedings of STOC '85, 405–412, New York, 1985. ACM Press.Google Scholar
  8. [KM96a]
    U. Koppenhagen and E.W. Mayr. Optimal Gröbner base algorithms for binomial ideals. In Proceedings of ICALP '96, LNCS 1099, 244–255, Heidelberg, 1996. Springer Verlag.Google Scholar
  9. [KM96b]
    U. Koppenhagen and E.W. Mayr. An optimal algorithm for constructing the reduced Gröbner basis of binomial ideals. In Proceedings of ISSAC '96, 55–62, New York, 1996. ACM Press.Google Scholar
  10. [MM82]
    E.W. Mayr and A. Meyer. The complexity of the word problems for commutative semigroups and polynomial ideals. Adv. Math., 46(3):305–329, 1982.CrossRefGoogle Scholar
  11. [Rac78]
    C. Rackoff. The covering and boundedness problems for vector addition systems. Theor. Comput. Sci., 6(2):223–231, 1978.CrossRefGoogle Scholar
  12. [Rob85]
    L. Robbiano. Term orderings on the polynomial ring. In Proceedings of EUROCAL '85, Vol. 2, LNCS 204, 513–517, Berlin-Heidelberg-New York-Tokyo, 1985. Springer Verlag.Google Scholar
  13. [Tai68]
    M.A. Taiclin. Algorithmic problems for commutative semigroups. Soviet Math. Dokl., 9:201–204, 1968.Google Scholar
  14. [Wei87]
    V. Weispfenning. Admissible orders and linear forms. ACM SIGSAM Bulletin, 21(2):16–18, 1987.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Ulla Koppenhagen
    • 1
  • Ernst W. Mayr
    • 1
  1. 1.Institut für InformatikTechnische Universität MünchenMünchenGermany

Personalised recommendations