Logics which capture complexity classes over the reals

  • Felipe Cucker
  • Klaus Meer
Technical Contributions
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1279)


We study real number complexity classes under a logical point of view. Following the approaches by Blum, Shub, and Smale [3] for computability and by Grädel and Meer [10] for descriptive complexity theory over the reals, we characterize such complexity classes by purely logical means. Among them we mainly find parallel classes which have not been studied in [10].


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.L. Balcázar, J. Díaz, and J. Gabarró. Structural Complexity I and II. EATCS Monographs on Theoretical Computer Science, 11 and 22. Springer-Verlag, 1988, 1990.Google Scholar
  2. 2.
    L. Blum, F. Cuclcer, M. Shub, and S. Smale. Complexity and Real Computation. Springer Verlag, to appear.Google Scholar
  3. 3.
    L. Blum, M. Shub, and S. Smale. On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines. Bulletin of the Amer. Math. Soc., 21:1–46, 1989.Google Scholar
  4. 4.
    A. Borodin. On relating time and space to size and depth. SIAM Journal on Computing, 6:733–744, 1977.CrossRefGoogle Scholar
  5. 5.
    F. Cucker. P≠R ≠ NC≠R. Journal of Complexity, 8:230–238, 1992.CrossRefGoogle Scholar
  6. 6.
    F. Cucker and M. Matamala. On digital nondeterminism. To appear in Mathematical Systems Theory.Google Scholar
  7. 7.
    F. Cucker and A. Torrecillas. Two P-complete problems in the theory of the reals. Journal of Complexity, 8:454–466, 1992.CrossRefGoogle Scholar
  8. 8.
    R. Fagin. Generalized first-order spectra and polynomial-time recognizable sets. SIAM-AMS Proc., 7:43–73, 1974.Google Scholar
  9. 9.
    E. Grädel and Y. Gurevich. Metafinite model theory. In: D. Leivant (ed.), Logic and Computational Complexity, pages 313–366, Springer 1996Google Scholar
  10. 10.
    E. Grädel and K. Meer. Descriptive complexity theory over the real numbers. In J. Renegar, M. Shub, and S. Smale, editors, The Mathematics of Numerical Analysis, volume 32 of Lectures in Applied Mathematics, pages 381–404. American Mathematical Society, 1996. A preliminary version appeared at STOC'95.Google Scholar
  11. 11.
    N. Immerman. Relational queries computable in polynomial time. Information and Control, 68:86–104, 1986.CrossRefGoogle Scholar
  12. 12.
    N. Immerman. Languages that capture complexity classes. SIAM Journal on Computing, 16:760–778, 1987.CrossRefGoogle Scholar
  13. 13.
    K. Meer. On the complexity of quadratic programming in real number models of computation. Theoretical Computer Science, 133:85–94, 1994.CrossRefGoogle Scholar
  14. 14.
    K. Meer and C. Michaux. A survey on real structural complexity theory. In Bulletin of the Belgian Math. Soc., 4:113–148, 1997.Google Scholar
  15. 15.
    C. Michaux. Une remarque à propos des machines sur R introduites par Blum, Shub et Smale. C. R. Acad. Sci. Paris, 309, Série 1:435–437, 1989.PubMedGoogle Scholar
  16. 16.
    J. Renegar. On the computational complexity and geometry of the first-order theory of the reals. Part II. Journal of Symbolic Computation, 13:301–327, 1992.Google Scholar
  17. 17.
    M. Vardi. Complexity of relational query languages. In 14th annual ACM Symp. on the Theory of Computing, pages 137–146, 1982.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Felipe Cucker
    • 1
  • Klaus Meer
    • 2
  1. 1.Department of MathematicsCity University of Hong KongKowloonHong Kong
  2. 2.Lehrstuhl C für Mathematik, RWTH AachenGermany

Personalised recommendations