Skip to main content

The complexity class θ 2p : Recent results and applications in AI and modal logic

  • Invited Lectures
  • Conference paper
  • First Online:
Book cover Fundamentals of Computation Theory (FCT 1997)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1279))

Included in the following conference series:

Abstract

This paper surveys some results involving bounded query classes in the context of structural and descriptive complexity theory, and reviews concrete complete problems in AI and modal logic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Allender and C. Wilson. Width-bounded Reducibility and Binary Search over Complexity Classes. In Proc. IEEE Conf. Structure in Complexity Theory, pp. 122–129, 1990.

    Google Scholar 

  2. R. Beigel. Bounded Queries to SAT and the Boolean Hierarchy. TCS, 84(2):199–223, 1991.

    Article  Google Scholar 

  3. A. Blass and Y. Gurevich. Henkin Quantifiers and Complete Problems. Annals of Pure and Applied Logic, 32:1–16, 1986.

    Article  Google Scholar 

  4. P. A. Bonatti and T. Eiter. Querying Disjunctive Databases Through Nonmonotonic Logics. TCS, 160:321–363, 1996.

    Article  Google Scholar 

  5. G. Brewka. Preferred Answer Sets. In Proc. Workshop on Logic Programming and Knowledge Representation, October 1997, forthcoming.

    Google Scholar 

  6. S. Buss and L. Hay. On Truth-Table Reducibility to SAT. Information and Computation, 91:86–102, 1991.

    Article  Google Scholar 

  7. J.-Y. Cai, et al. The Boolean Hierarchy I: Structural Properties. SIAM J. Computing, 17(6):1233–1252, 1988.

    Article  Google Scholar 

  8. R. Carnap. Meaning and Necessity. The University of Chicago Press, 1947.

    Google Scholar 

  9. J. Castro and C. Seara. Characterizations of Some Complexity Classes Between θ 2p and Δ p2 . In Proc. STAGS `92, LNCS 577, pp. 305–317, 1992.

    Google Scholar 

  10. A. Chandra, L. Stockmeyer, and U. Vishkin. Constant depth reducibility. SIAM J. Computing, 13:423–439, 1984.

    Article  Google Scholar 

  11. M. Dalal. Investigations into a Theory of Knowledge Base Revision: Preliminary Report. In Proc. AAAI `88, pages 475–479, 1988.

    Google Scholar 

  12. A. Dawar, G. Gottlob, and L. Hella. Capturing Relativized Complexity Classes without Order. Mathematical Logic Quarterly, to appear.

    Google Scholar 

  13. H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer, 1995.

    Google Scholar 

  14. T. Eiter and G. Gottlob. On the Complexity of Propositional Knowledge Base Revision, Updates, and Counterfactuals. Art. Intelligence, 57(2-3):227–270, 1992.

    Article  Google Scholar 

  15. T. Eiter and G. Gottlob. The Complexity of Logic-Based Abduction. JACM, 42(1):3–42, January 1995.

    Article  Google Scholar 

  16. T. Eiter, G. Gottlob, and N. Leone. Abduction From Logic Programs: Semantics and Complexity. TCS, 1997.

    Google Scholar 

  17. T. Eiter, G. Gottlob, and H. Veith. Modular Logic Programming and Generalized Quantifiers. In Proc LPNMR '97, LNCS, 1997, forthcoming.

    Google Scholar 

  18. R. Fagin. Generalized First-Order Spectra and Polynomial-Time Recognizable Sets. In R. M. Karp, editor, Complexity of Computation, pp. 43–74. AMS, 1974.

    Google Scholar 

  19. R. Fagin. Probabilities on Finite Models. J. Symbolic Logic, 41:50–58, 1976.

    Google Scholar 

  20. W. Gasarch. The Complexity of Optimization Functions. Technical Report 1652, Dept. of Computer Science, University of Maryland, 1986.

    Google Scholar 

  21. W. Gasarch, L. A. Hemachandra, and A. Hoene. On Checking Versus Evaluation of Multiple Queries. In Proc. MFCS '90, LNCS 452, pp. 261–268, 1990.

    Google Scholar 

  22. M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Disjunctive Databases. New Generation Computing, 9:365–385, 1991.

    Google Scholar 

  23. Y. Glebskii et al. Range and Degree of Realizability of Formulas in the Restricted Predicate Calculus. Kibernetika, pp. 17–28, 1969.

    Google Scholar 

  24. G. Gottlob. Survey on a Carnapian Extension of S5. In E. Orlowska, editor, Logic At Work, Essays Dedicated to the Memory of Helena Rasiowa. To appear.

    Google Scholar 

  25. G. Gottlob. Complexity Results for Nonmonotonic Logics. J. Logic and Computation, 2(3):397–425, 1992.

    Google Scholar 

  26. G. Gottlob. NP Trees and Carnap's Modal Logic. JACM, 42(2):421–457, 1995. Abstract Proc. FOCS '93, 42–52.

    Article  Google Scholar 

  27. G. Gottlob. The Complexity of Propositional Default Reasoning Under the Stationary Fixed Point Semantics. Information and Computation, 121(1):81–92, 1995.

    Article  Google Scholar 

  28. G. Gottlob. Relativized Logspace and Generalized Quantifiers over Ordered Finite Structures. J. Symbolic Logic, 1997. Abstract Proc. IEEE LICS '95, 65–78.

    Google Scholar 

  29. G. Gottlob, N. Leone, and H. Veith. Second-Order Logic and the Weak Exponential Hierarchies. In Proc. MFCS '95, LNCS 969, pp. 66–81, 1995. Full paper CD-TR 95/80, Information Systems Dept, TU Wien.

    Google Scholar 

  30. Y. Gurevich. Logic and the Challenge of Computer Science. In E. Börger, editor, Trends in Theoretical Computer Science, ch 1. Computer Science Press, 1988.

    Google Scholar 

  31. J. Halpern and B. Kapron. Zero-One Laws for Modal Logic. Annals of Pure and Applied Logic, 69:157–193, 1994. Abstract Proc. IEEE LICS '92.

    Article  Google Scholar 

  32. L. Henkin. Some Remarks on Infinitely Long Formulas. In Infinitistic Methods, Proc. Symp. on Foundations of Mathematics, pp. 167–183. Warsaw, Panstwowe Wydawnictwo Naukowe and Pergamon Press, 1961.

    Google Scholar 

  33. N. Immerman. Descriptive Complexity Theory. 1997, Springer, to appear.

    Google Scholar 

  34. B. Jenner and J. Toran. Computing Functions with Parallel Queries to NP. TCS, 141:175–193, 1995.

    Article  Google Scholar 

  35. D. S. Johnson. A Catalog of Complexity Classes. In J. van Leeuwen (ed), Handbook of TCS A, ch. 2, 1990.

    Google Scholar 

  36. J. Kadin. P NP[O(log n)] and Sparse Turing-Complete Sets for NP. JCSS, 39:282–298, 1989.

    Google Scholar 

  37. M. Krentel. The Complexity of Optimization Problems. JCSS, 36:490–509, 1988.

    Google Scholar 

  38. R. Ladner and N. Lynch. Relativization Questions about Logspace Computability. Mathematical Systems Theory, 10:19–32, 1976.

    Google Scholar 

  39. P. Liberatore. The Complexity of Iterated Belief Revision. In Proc. ICDT `97, LNCS 1186, 276–290, 1997.

    Google Scholar 

  40. B. Nebel. How Hard is it to Revise a Belief Base ? TR No. 83, Inst. für Informatik, Univ. Freiburg, Germany, August 1996. In: Handbook on Defensible Reasoning and Uncertainty Management Systems. Volume 2: Belief Change, D. Dubois and H. Prade (eds), to appear.

    Google Scholar 

  41. M. Ogihara. Equivalence of NCk and ACk−1 closures of NP and other classes. Information and Computation, 120:55–58, 1995.

    Article  Google Scholar 

  42. M. Ogiwara. NC k(NP) = AC k−1(NP) In Proc. STACS `94, LNCS 775, pp. 313–324, 1994.

    Google Scholar 

  43. C Papadimitriou and S. Zachos Two Remarks on the Power of Counting. In Proc. 6th GI Conf. on TCS, LNCS 145, pp. 269–276, 1983.

    Google Scholar 

  44. H. Przymusinska and T. Przymusinski. Stationary default extensions.Fundamenta Informaticae, 21(1/2):67–87, 1994.

    Google Scholar 

  45. R. Reiter. A Logic for Default Reasoning. Artificial Intelligence, 13:81–132, 1980.

    Article  Google Scholar 

  46. I. Stewart. Logical Characterizations of Bounded Query Classes, I + II. Fundamenta Informaticae, 18:65–92+ 93–105, 1993.

    Google Scholar 

  47. K. Wagner. More Complicated Questions about Maxima and Minima, and Some Closures of NP. TCS, 51:53–80, 1987. Abstract Proc. ICALP '86, 434–443.

    Article  Google Scholar 

  48. K. Wagner. Bounded Query Classes. SIAM I Computing, 19(5):833–846, 1990.

    Article  Google Scholar 

  49. C. Wilson. Relativized NC. Mathematical Systems Theory, 20:13–29, 1987.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bogdan S. Chlebus Ludwik Czaja

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eiter, T., Gottlob, G. (1997). The complexity class θ 2p : Recent results and applications in AI and modal logic. In: Chlebus, B.S., Czaja, L. (eds) Fundamentals of Computation Theory. FCT 1997. Lecture Notes in Computer Science, vol 1279. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0036168

Download citation

  • DOI: https://doi.org/10.1007/BFb0036168

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63386-0

  • Online ISBN: 978-3-540-69529-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics