Advertisement

Translation-based deduction methods for modal logics

  • Olivier Gasquet
  • Andreas Herzig
Logics
Part of the Lecture Notes in Computer Science book series (LNCS, volume 945)

Abstract

The aims of this paper are twofold: First, we review the automated deduction method for normal multi-modal logics which has shown to be the most general and fruitful, namely translation into first-order theories, and more precisely, the functional translation into equational theories with ordered sorts Second, to show how this method can be extended to monotonic modal logics through a translation from the latter into normal modal logics.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Auffray. Résolution modale et logique des chemins. PhD thesis, Université de Caen, France, 1989.Google Scholar
  2. 2.
    Y. Auffray and P. Enjalbert. Modal theorem proving: An equational viewpoint In Int. Joint Conf. on AI, 1989.Google Scholar
  3. 3.
    Y Auffray and P. Enjalbert. Modal theorem proving: An equational viewpoint. Journal of Logic and Computation, 1990.Google Scholar
  4. 4.
    L. Catach. Normal multi-modal logics. In Proc. Nat. Conf. on AI(AAAI'88), pages 491–495, 1988.Google Scholar
  5. 5.
    L. Catach. Les logiques multi-modales. PhD thesis, Université Paris VI, France, 1989.Google Scholar
  6. 6.
    B. Chellas. Modal logic: an introduction. Cambridge University Press, 1980.Google Scholar
  7. 7.
    Ph. Cohen and H. Levesque. Intention=choice+commitment. In Proc. of AAAI, Seattle, 1987.Google Scholar
  8. 8.
    F. Debart, P. Enjalbert, and M. Lescot. Multi-modal deduction using equational and ordersorted logic. In M. Okada and S. Kaplan, editors, 2nd Conf. on Conditional Rewriting Systems, LNCS. Springer Verlag, 1990.Google Scholar
  9. 9.
    L. Fariñas del Cerro and A. Herzig. Linear modal deductions. In 9th Int. Conf. on Automated Deduction, volume 310 of LNCS, pages 500–516. Springer Verlag, 1988.Google Scholar
  10. 10.
    L. Fariñas del Cerro and A. Herzig. Machine Learning, Meta Reasoning and Logics, chapter Deterministic Modal Logics for Automated Deduction. Kluwer Academic Publishers, 1989.Google Scholar
  11. 11.
    L. Fariñas del Cerro and A. Herzig. Deterministic modal logic for automated deduction. In 9th European Conference on Artificial Intelligence, 1990.Google Scholar
  12. 12.
    L. Fariñas del Cerro and A. Herzig. Handbook of Logic in Artificial Intelligence, chapter Automated Deduction for Epistemic and Temporal Logics. Oxford University Press, 1995.Google Scholar
  13. 13.
    O. Gasquet. A unification algorithm for multimodal logics with persistence axiom. In 5th International Workshop on Unification (UNIF'91), Barbizon, France, 1991.Google Scholar
  14. 14.
    O. Gasquet. Applied Logic: How, What and Why, chapter imization of Deduction for Multi-Modal Logics. Kluwer Academic Publishers, 1995.Google Scholar
  15. 15.
    J. Halpern. Reasoning about knowledge: an overview. In J. Halpern, editor, Conf. on Theoretical Aspects of Reasoning about Knowledge, pages 1–17. Morgan Kauffmann, 1986.Google Scholar
  16. 16.
    J. Halpern and Y. Moses. A guide to the modal logic of knowledge and belief. In Proc. of IJCAI, 1985.Google Scholar
  17. 17.
    D. Harel. Handbook of Philosophical Logic III, chapter Dynamic Logic”. Reidel Publishing Company, 1986.Google Scholar
  18. 18.
    A. Herzig. Déduction automatique en logique modale et algorithmes d'unification. PhD thesis, Université Paul Sabatier, Toulouse, France, 1989.Google Scholar
  19. 19.
    G. Hughes and M. J. Cresswell. An Introduction to Modal Logic. Methuen & Co. Ltd, 1968.Google Scholar
  20. 20.
    G. Hughes and M. J. Cresswell. A Companion to Modal Logic. Methuen & Co. Ltd, 1984.Google Scholar
  21. 21.
    A. J. I. Jones and I. Pörn. Ideality, sub-ideality and deontic logic. Synthese, 65, 1985.Google Scholar
  22. 22.
    A. J. I. Jones and I. Pörn. ‘ought and must'. Synthese, 66, 1986.Google Scholar
  23. 23.
    S. Kraus and D. Lehmann. Automata, Languages and Programing, volume 226 of Lecture Notes in Computer Science, chapter Knowledge, belief and time, pages 186–195. Springer-Verlag, 1986.Google Scholar
  24. 24.
    H. J. Ohlbach. A resolution calculus for modal logics. In 9th Int. Conf. on Automated Deduction, volume 310 of LNCS. Springer-Verlag, 1988.Google Scholar
  25. 25.
    H. J. Ohlbach. Semantics-based translation method for modal logics. Journal of Logic and Computation, 1(5):691–746, 1991.Google Scholar
  26. 26.
    H. J. Ohlbach. imized translation of multi modal logic into predicate logic. In Proc. of International Conference on Logic Programming and Automated Reasoning (LPAR'93), LNAI. Springer-Verlag, 1993.Google Scholar
  27. 27.
    H. J. Ohlbach and A. Herzig. Parameter structures for parametrized modal operators. In Proc. of Int. Joint Conf. on Artificial Intelligence; 1991.Google Scholar
  28. 28.
    H. Sahlqvist. Completeness and correspondence in the first and second order semantics for modal logics. In S. Kanger, editor, Proc. 3rd Scandinavian Logic Symposium 1973, volume 82 of Studies in logic. North-Holland, 1975.Google Scholar
  29. 29.
    M. Schmidt-Schauß. Computational Aspects of an Order-Sorted Logic with Term Declarations. LNAI. Springer-Verlag, 1989.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Olivier Gasquet
    • 1
  • Andreas Herzig
    • 1
  1. 1.IRIT - UPSToulouse CedexFrance

Personalised recommendations