Possibilistic semantic nets

  • Sandra Sandri
  • Guilherme Bittencourt
Possibility Theory
Part of the Lecture Notes in Computer Science book series (LNCS, volume 945)


We investigate how possibilistic valuations can be introduced in the semantic net formalism. The model proposed here deals with multiple inheritance, exceptions and non-monotonicity by making use of necessity measures attached to the individual links in the net. We also define extensions for this formalism and compare them to other models in the literature.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Quillian, M.R.: Semantic Memory. In: M.L. Minsky (ed): Semantic Information Processing. Cambridge, Ma: M.I.T. Press, pp.216–270 (1968).Google Scholar
  2. 2.
    Bittencourt G., Marengoni M., Sandri S.: The use of Possibilistic Logic PL1 in a Customizable Tool for the Generation of Production-Rule Based Systems. Proc. of ECSQRAU' 93. Granada, Spain (1993).Google Scholar
  3. 3.
    Fahlman, S. E.: NETL: A System for Representing and Using Real-World Knowledge. Cambridge, Ma: M.I.T. Press (1979).Google Scholar
  4. 4.
    Froidevaux C., Kayser D.: Inheritance in Semantic Networks and Default Logic. In: P. Smets, E.H. Mandani, D. Dubois, H. Prade (eds): Non-Standart Logics for Automated Reasoning. Academic Press (1988).Google Scholar
  5. 5.
    Etherington D.W.: Formalizing Nonmonotonic Reasoning Systems. Artificial Intelligence, vol 31, n∘1, pp. 41–85 (1987).Google Scholar
  6. 6.
    Touretzky D.S., Horty J.F., Thomason R.H.: A Clash of Intuitions: The Current State of Non-monotonic Multiple Inheritance Systems. Proc. 10th IJCAI, pp. 476–482 (1987).Google Scholar
  7. 7.
    Rossazza J-P.: Utilization de hierarchies de classes floues pour la representation de connaissances imprecises et sujettes a exceptions: Le systeme “SORCIER”. Phd Thesis. Toulouse, France: Uni. Paul Sabatier (1990).Google Scholar
  8. 8.
    Sandewall E.: Nonmonotonic Inference Rules for Multiple Inheritance with Exceptions. Proc. of the IEEE, vol 74, n∘ 10, pp. 1345–1353 (1986).Google Scholar
  9. 9.
    Simari G.R, Loui R.P.: A mathematical treatment of defeasible reasoning and its implementation. Artificial Intelligence, vol 53, pp.125–157 (1992).Google Scholar
  10. 10.
    Dubois D., Prade H. (with the collaboration of H. Farreny, R. Martin-Clouaire, C. Testemale): Possibility Theory — An Approach to the Computerized Processing of Uncertainty. Plenum Press (1988).Google Scholar
  11. 11.
    Dubois D., Lang J., Prade H.: Possibilistic Logic. Report IRIT/91-98/R. Toulouse, France: IRIT (1991).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Sandra Sandri
    • 1
  • Guilherme Bittencourt
    • 1
  1. 1.Institute Nacional de Pesquisas Espaciais (INPE)S. J. Campos - SPBrazil

Personalised recommendations