Possibilistic logic as interpretability logic

  • Petr Hájek
Possibility Theory
Part of the Lecture Notes in Computer Science book series (LNCS, volume 945)


It is shown that a variant of qualitative (comparative) possibilistic logic is closely related to modal interpretability logic, as studied in the metamathematics of first-order arithmetic. This contributes to our knowledge on the relations of logics of uncertainty to classical systems of modal logic.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bendová K., Hájek P.: Possibilistic logic as tense logic, in: Proc. QUARDET'93, Barcelona 1993.Google Scholar
  2. 2.
    Berarducci A.: The interpretability logic of Peano arithmetic, Journal of Symb. Log. 55, 1990, 1059–1089.Google Scholar
  3. 3.
    Boutilier C.: Modal logics for qualitative possibility and beliefs, in: Uncertainty in Artificial Intelligence VIII, Morgan-Kaufmann Publ. 1992, 17–24.Google Scholar
  4. 4.
    Dubois D., Lang J., Prade H.: Possibilistic logic, Report IRIT-91-98/R, Decembre 1991, Toulouse.Google Scholar
  5. 5.
    Dubois D., Prade H.: Possibilistic and fuzzy logic, in: (Smets et al., eds): Nonstandard logics for automated reasoning, Academic Press 1988, 287.Google Scholar
  6. 6.
    Dubois D., Prade H., Testemate C.: In search for a modal system for possibility theory, in: Proc. ECAP89, Munich 1988, 581–586.Google Scholar
  7. 7.
    Fariñas del Cerro L., Herzig A.: A modal analysis of possibilistic logic, in: (Kruse et al.,eds): Symbolic and Quantitative Approaches to Uncertainty, Lect. Notes in Comp. Sci. 548, Springer-Verlag 1991, p.58, (cf. also: Jorrand and Kelemen, eds: Fundamentals of AI research, Lect. Notes in AI 535, Springer-Verlag 1991, 11).Google Scholar
  8. 8.
    Hájek P., Montagna F.: The logic of Π 1conservativity, Arch. Math. Logic 30, 1990, 113–123.Google Scholar
  9. 9.
    Hájek P., Montagna F.: The logic of Π 1conservativity continued, Arch. Math. Logic 32, 1992, 57–63.Google Scholar
  10. 10.
    de Jongh D., Veltman F.: Provability logics for relative interpretability, in: Mathematical Logic (Proceedings of the Heyting conference, Bulgaria 1988), Plenum Press 1990.Google Scholar
  11. 11.
    Shavrukov V.Yu.: The logic of relation interpretability over Peano arithmetic (in Russian) Moscow 1988, preprint.Google Scholar
  12. 12.
    Smoryński C.: Self-reference and modal logic, Springer-Verlag 1988.Google Scholar
  13. 13.
    Solovay R.: Provability interpretations of modal logic, Israel Journ. Math. 25, 1976, 287–304.Google Scholar
  14. 14.
    Visser A.: Interpretability logic, in: Mathematical Logic (Proc. Heyting conference Bulgaria 1988), Plenum Press 1988.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Petr Hájek
    • 1
  1. 1.Institute of Computer ScienceAcademy of Sciences of the Czech RepublicPrague 8Czech Republic

Personalised recommendations