Decision influence diagrams with fuzzy utilities

  • Miguel López
Part of the Lecture Notes in Computer Science book series (LNCS, volume 945)


In this paper, decision influence diagrams are studied when the assessment of utilities with real numerical values is considered to be too restrictive, and the use of fuzzy sets to model the problem in terms of fuzzy utilities seems appropiate. An algorithm to solve decision influence diagrams with fuzzy utilities is suggested.


Kolodiejczyk coefficient decision influence diagram fuzzy random variable fuzzy set 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gil, M.A. & Jain, P. (1992). Comparison of Experiments in Statistical Decision problems with fuzzy utilities. IEEE Trans. Syst., Man and Cybern. 22, 662–670.Google Scholar
  2. 2.
    Kolodziejczyk, W. (1986). Orlovsky's concept of Decision Making with fuzzy preference relation-further results. Fuzzy Sets and Systems 19, 11–20.Google Scholar
  3. 3.
    Negoita, C.V. & Ralescu, D.A. (1987). Simulation, Knowledge-based Computing, and Fuzzy Statistics. New York, NY: Van Nostrand Reinhold Co.Google Scholar
  4. 4.
    Olmsted, S.M. (1983). On representing and solving decision problems. Ph. D. Thesis, Stanford University.Google Scholar
  5. 5.
    Orlovsky, S.A. (1980). On formalization of a general fuzzy mathematical problem. Fuzzy Sets and Systems 3, 311–321.Google Scholar
  6. 6.
    Puri, M.L. & Ralescu, D.A. (1985). The concept of Normality for Fuzzy Random Variables. Ann. Probab. 13, 1373–1379.Google Scholar
  7. 7.
    Puri, M.L. & Ralescu, D.A. (1986). Fuzzy Random Variables. J. Math. Anal. Appl. 114, 409–422.Google Scholar
  8. 8.
    Shachter, R. (1986). Evaluating Influence Diagrams. Opns. Res. 34, 871–882.Google Scholar
  9. 9.
    Smith, J.Q. (1988). Decision Analysis. A Bayesian Approach. Chapman and Hall, London.Google Scholar
  10. 10.
    Wonnacott, R.J. & Wonnacott, T.H. (1985). Introductory Statistics. New York, NY:Wiley.Google Scholar
  11. 11.
    Zadeh, L.A. (1975). The concept of a linguistic variable and its application to approximate reasoning. Inf. Sci., Part 1: Vol.8, 199–249; Part 2: 8, 301–353; Part 3: 9, 43–80.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Miguel López
    • 1
  1. 1.Departemento de MatemáticasUniversidad de OviedoOviedoSpain

Personalised recommendations