Computational experiments with Boltzmann Machines

  • A. d'Anjou
  • M. Graña
  • M. C. Hernandez
  • F. J. Torrealdea
Neural Network Architectures And Algorithms
Part of the Lecture Notes in Computer Science book series (LNCS, volume 540)


This paper presents the results of a series of experiments conducted by our group involving the application of Boltzmann Machines to a variety of problems. The main aim of these experiments is to asses the empirical behavior of the BM, because althought BM are widely referenced in the literature, very few, if any, exhaustive experimental explorations of their behavior have been done.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Aarts E.H.L., J.H.M. Korst, (1987). Boltzmann machines and their applications. LNCS 258. Springer pp. 34–51.Google Scholar
  2. [2]
    Aarts E.H.L., J.H.M. Korst, (1988). Simulated annealing and Boltzmann Machines. Wiley, Chichester.Google Scholar
  3. [3]
    Aarts E.H.L., J.H.M. Korst, (1989). Computations in massively parallel networks based on the Boltzmann machine: A review. Parallel Comp. 9, pp. 129–145.Google Scholar
  4. [4]
    Aarts E.H.L., J.H.M. Korst, (1989). Boltzmann machines for travelling salesman problems. Europ. J. Oper. Res. 39, pp. 79–95.Google Scholar
  5. [5]
    Ackley D.H., G.E. Hinton, T.J. Sejnowski, (1985). A Learning algorithm for Boltzmann machines. Cogn. Sci. 9, pp. 147–169.Google Scholar
  6. [6]
    Ballard, D.H., (1987). Modular learning in neural networks. Proc. National Conf. on IA. AAAI-87. Seattle, pp. 279–284.Google Scholar
  7. [7]
    d'Anjou A., M. Graña, F.J. Torrealdea, M.C. Hernandez (1990) Máquinas de Boltzmann para la resolución del problema de la satisfiabilidad en el cálculo proposicional, Rev. Esp. Autom. Inf. in pressGoogle Scholar
  8. [8]
    d'Anjou A., M. Graña, F.J. Torrealdea, M.C. Hernandez (1990) Solving Satisfiability via Boltzmann Machines IEEE PAMI revised and accepted for publicationGoogle Scholar
  9. [9]
    Johnson, D.S., C.R. Aragon, L.A. McGeoch, C. Schevon, (1989). Optimization by simulated annealing: an experimental evaluation; part I, graph partitioning. Oper. Res. 37 (6), pp. 865–892.Google Scholar
  10. [10]
    Kirpatrick S., C.D. Gelatt Jr., M.P. Vecchi, (1983). Optimization by simulated annealing. Science 20, pp. 671–680.Google Scholar
  11. [11]
    Laarhoven P.J.M., E.H.L. Aarts, (1987). Simulated annealing: Theory and Applications. Kluwer, Dordrecht, Neth.Google Scholar
  12. [12]
    Masson, E., Y-J. Wang, (1990). Introduction to computation and learning in artificial neural networks. Europ. J. Oper. Res. 47, pp. 1–28.Google Scholar
  13. [13]
    Sejnowski T.J. (1986) Higher Order Boltzmann Machines Neural Networks for Computing AIP pp.398–403Google Scholar
  14. [14]
    Sejnowski J.T., Kienker P.K., Hinton G.E. (1986) Learning symmetry groups with hidden units: beyond the perceptron Physica 22D pp.260–275Google Scholar
  15. [15]
    Touretzky, D., G.E. Hinton, (1988). A distributed connectionist production system. Cogn. Sci. 12, pp.423–466.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • A. d'Anjou
    • 1
  • M. Graña
    • 1
  • M. C. Hernandez
    • 1
  • F. J. Torrealdea
    • 1
  1. 1.Dpto. CCIAFacultad Informatica UPV/EHUSan Sebastián

Personalised recommendations