Advertisement

On computations with integer division

extended abstract
  • Bettina Just
  • Fb Mathematik
  • Friedhelm Meyer auf der Heide
  • Fb Informatik
  • Avi Wigderson
Contributed Papers Algorithms
Part of the Lecture Notes in Computer Science book series (LNCS, volume 294)

Abstract

We consider computation trees (CT's) with operations S ⊂ {+, −, *, DIV, DIVC}, where DIV denotes integer division and DIVC integer division by constants. We characterize the families of languages L ⊂ ℕ that can be recognized over {+, −, DIVC}, {+, −, DIV}, and {+, −, *, DIV}, resp. and show that they are identical. Furthermore we prove lower bounds for CT's with operations {+, −, DIVC} for languages L ⊂ ℕ which only contain short arithmetic progressions. We cannot apply the classical component counting arguments as for operation sets S ⊂ {+, −, *,./.} because of the DIVC - operation. Such bounds are even no longer true. Instead we apply results from the Geometry of Numbers about arithmetic progressions on integer points in high-dimensional convex sets for our lower bounds.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [B]
    M.Ben Or: Lower bounds for algebraic computation trees, Proc. 15th ACM STOC, 80–86, 1983.Google Scholar
  2. [BJM]
    L.Babai, B.Just, F.Meyer auf der Heide: On the limits of computations with the floor functions, accepted for Information and Computation.Google Scholar
  3. [C]
    J.W.S. Cassels: An introduction to the geometry of numbers, Springer, Berlin 1959, second printing 1971.Google Scholar
  4. [DL]
    D. Dobkin, R. Lipton: A lower bound of 1/2 n2 on linear search programs for the knapsack problem, J.C.S.S. 16, 417–421, 1975.Google Scholar
  5. [HJLS]
    J.Hastad, B.Just, J.Lagarias, C.P.Schnorr: Polynomial time algorithms for finding integer relations among real numbers, Proc. STACS, 105–118, 1986.Google Scholar
  6. [KM]
    P. Klein, F. Meyer auf der Heide: A lower bound for the knapsack problem on random access machines, Act. Inf. 19, 385–395, 1983.Google Scholar
  7. [L]
    H.W. Lenstra Jr.: Integer programming with a fixed number of variables, Report 81-03, Mathematisch Instituut, Amsterdam, 1983.Google Scholar
  8. [LLS]
    J.C.Lagarias, H.W.Lenstra Jr., C.P.Schnorr: K arkine-Zolotareff Bases and successive minima of a lattice and its reciprocal lattice, preprint 86.Google Scholar
  9. [M]
    F. Meyer auf der Heide: Lower bounds for solving linear diophantine equations on random access machines, J.ACM 32(4), 929–937, 1985.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Bettina Just
    • 1
  • Fb Mathematik
    • 1
  • Friedhelm Meyer auf der Heide
    • 2
  • Fb Informatik
    • 2
  • Avi Wigderson
    • 3
  1. 1.Johann Wolfgang Goethe UniversitätFrankfurt a.M.Fed. Rep. of Germany
  2. 2.Universität DortmundDortmundFed. Rep. of Germany
  3. 3.Computer Science DepartmentHebrew UniversityJerusalemIsrael

Personalised recommendations