Advertisement

Geometry of numbers and integer programming

Summary
  • C. P. Schnorr
Invited Presentation
Part of the Lecture Notes in Computer Science book series (LNCS, volume 294)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Babai: On Lovász lattice reduction and the nearest lattice point problem. Proc. of STACS '85, Springer Lecture Notes in Computer Science 182 (1985), 13–20.Google Scholar
  2. 2.
    G. Bergman: Notes on Ferguson and Forcade's generalized euclidean algorithm. Preprint, Dept. of Mathematics, Univ. of California, Berkeley (1980).Google Scholar
  3. 3.
    L. Bernstein: The Jacobi-Perron algorithm. Springer Lecture Notes in Mathematics 207 (1971).Google Scholar
  4. 4.
    A. J. Brentjes: Multidimensional continued fraction algorithms. Math. Centre Tracts 155, Amsterdam (1982).Google Scholar
  5. 5.
    J. W. S. Cassels: An Introduction to the Geometry of Numbers. 2nd edition, Springer, Berlin (1971).Google Scholar
  6. 6.
    H. Ferguson and R. Forcade: Generalization of the euclidean algorithm for real numbers to all dimensions higher than two. Bull. Amer. Math. Soc. 1, 6 (1979), 912–914.Google Scholar
  7. 7.
    Ferguson and R. Forcade: Multidimensional euclidean algorithms. J. Reine Angew. Math. 334 (1982), 171–181.Google Scholar
  8. 8.
    A. M. Frieze, J. Hastad, R. Kannan, J. Lagarias and A. Shamir: Linear congruential generators do not produce random sequences. Siam. J. Computing (to appear).Google Scholar
  9. 9.
    C. F. Gauss: Disquisitiones Arithmeticae. Leipzig (1801). Deutsche Übersetzung, Springer, Berlin (1889).Google Scholar
  10. 10.
    P. M. Gruber and C. G. Lekkerkeker: Geometry of Numbers. 2nd edition, North-Holland, Amsterdam-New York (1987).Google Scholar
  11. 11.
    J. Hastad, B. Just, J. Lagarias and C. P. Schnorr: Polynomial time algorithms for finding integer relations among real numbers. Preliminary version in Proc. of STACS '86, Springer Lecture Notes in Computer Science 210 (1986), 105–118. Full paper to appear in Siam. J. Comput.Google Scholar
  12. 12.
    B. Helfrich: Algorithms to construct Minkowski reduced and Hermite reduced lattice bases. Theor. Comp. Sci. 41 (1985), 125–139.Google Scholar
  13. 13.
    C. G. J. Jacobi: Allgemeine Theorie der Kettenbruchähnlichen Algorithmen. J. Reine Angew. Math. 69 (1868), 29–64.Google Scholar
  14. 14.
    R. Kannan: Minkowski's convex body theorem and integer programming. Mathematics of Operations Research 12 (1987), 415–440.Google Scholar
  15. 15.
    A. Korkine and G. Zolotareff: Sur les formes quadratiques. Math. Ann. 6 (1873), 366–398.Google Scholar
  16. 16.
    J. Lagarias and A. M. Odlyzko: Solving low density subset sum problems. 24th Ann. Symp. of Foundation of Comp. Sci. (1983), 1–10.Google Scholar
  17. 17.
    J. Lagarias, H. W. Lenstra, Jr., and C. P. Schnorr: Korkine-Zolotareff bases and successive minima of a lattice and its reciprocal lattice. To appear in Combinatorica (1987).Google Scholar
  18. 18.
    A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász: Factoring polynomials with rational coefficients. Math. Ann. 261 (1982), 513–534.Google Scholar
  19. 19.
    H. W. Lenstra, Jr.: Integer programming with a fixed number of variables. Mathematics of Operations Research 8 (1983), 538–548.Google Scholar
  20. 20.
    H. Minkowski: Geometrie der Zahlen. Teubner, Leipzig (1910).Google Scholar
  21. 21.
    O. Perron: Grundlage für eine Theorie des Jacobischen Kettenbruchalgorithmus. Math. Ann. 64 (1907), 1–76.Google Scholar
  22. 22.
    C. P. Schnorr: A hierarchy of polynomial time lattice basis reduction algorithms. To appear in Theor. Comp. Sci. (1987).Google Scholar
  23. 23.
    C. P. Schnorr: A more efficient lattice reduction algorithm. To appear in J. Algorithms (1987).Google Scholar
  24. 24.
    A. Schönhage: Factorization of univariate integer polynomials by diophantine approximation and by an improved basis reduction algorithm. Proc. of 11th ICALP. Springer Lecture Notes in Computer Science 172 (1984), 436–447.Google Scholar
  25. 25.
    G. Szekeres: Multidimensional continued fraction algorithms. Ann. Univ. Sci. Budapest, Eötvös Sect. Math. 13 (1970), 113–140.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • C. P. Schnorr
    • 1
  1. 1.Fachbereich Mathematik/InformatikUniversität FrankfurtGermany

Personalised recommendations