Automata theory meets circuit complexity

  • P. McKenzie
  • D. Thérien
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 372)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Aj83]
    M. Ajtai, Σ11 formulae on finite structures, Annals of Pure and Applied Logic24 (1983), pp. 1–48.CrossRefGoogle Scholar
  2. [Ba86]
    D.A. Barrington, Bounded-width polynomial-size branching programs recognize exactly those languages in NC1, Proc. of the 18th ACM Symp. on the Theory of Computing (1986), pp. 1–5.Google Scholar
  3. [BaCoStTh88]
    D. Mix Barrington, K. Compton, H. Straubing and D. Thérien, Regular languages in NC1, Boston College Technical Report TR-BCCS-88-02, 1988.Google Scholar
  4. [BaImSt88]
    D. Mix Barrington, N. Immerman and H. Straubing, On uniformity within NC1, Proc. of the 3rd Annual Conf. on the Structure in Complexity Theory, IEEE Computer Society Press (1988), pp. 47–59.Google Scholar
  5. [BaStTh88]
    D.A. Barrington, H. Straubing and D. Thérien, unpublished manuscript, 1988.Google Scholar
  6. [BaTh87a]
    D.A. Barrington and D. Thérien, Finite monoids and the fine structure of NC1, Proc. of the 19th ACM Symp. on the Theory of Computing (1987), pp. 101–109.Google Scholar
  7. [BaTh87b]
    D.A. Barrington and D. Thérien, Non-uniform automata over groups, Proc. of the 14th International Colloquium on Automata, Languages and Programming, Springer Lecture Notes in Comp. Sci. 267 (1987), pp. 163–173.Google Scholar
  8. [BoDoFiPa83]
    A. Borodin, D. Dolev, F. Fich and W. Paul, Bounds for width-two branching programs, Proc. of the 15th ACM Symp. on the Theory of Computing (1983), pp. 97–93.Google Scholar
  9. [Co85]
    S.A. Cook, A taxonomy of problems with fast parallel solutions, Information and Computation64 (1985), pp. 2–22.Google Scholar
  10. [Ei74]
    S. Eilenberg, Automata, Languages and Machines, Academic Press, Vol. A (1974), Vol. B, (1976).Google Scholar
  11. [FuSaSi81]
    M.L. Furst, J.B. Saxe and M. Sipser, Parity, circuits, and the polynomial-time hierarchy, Proc. of the 22nd IEEE Symp. on the Foundations of Computer Science (1981), pp. 260–270. Journal version Math. Systems Theory18 (1984), 13–27.Google Scholar
  12. [Ha87]
    J.T. Håstad, Computational Limitations for Small-Depth Circuits, Ph. D. Thesis, M.I.T., ACM Doctoral Dissertation Awards, MIT Press (1987).Google Scholar
  13. [HoUl79]
    J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison-Wesley (1979).Google Scholar
  14. [Jo86]
    D.S. Johnson, The NP-completeness column: and ongoing guide, J. of Algorithms7:2 (June 1986), pp. 289–305.CrossRefGoogle Scholar
  15. [Kl54]
    S.C. Kleene, Representation of events in nerve nets and finite automata, Automata Studies, (Shannon and McCarthy, eds), Princeton University Press, Princeton (1954), pp 3–41.Google Scholar
  16. [Mu88]
    J. Mullins, Programmes sur des petites variétés de monoïdes apériodiques, Mémoire de maîtrise, Dép. I.R.O., Univ. de Montréal, en préparation (1988).Google Scholar
  17. [Pe88]
    P. Péladeau, Classes of boolean circuits and varieties of finite monoids, draft, May 1988.Google Scholar
  18. [Pi84]
    J.-E. Pin, Variétés de langages formels, Masson (1984).Google Scholar
  19. [PiStTh88]
    J.-E. Pin, H. Straubing and D. Thérien, Locally trivial categories and unambiguous concatenation, J. of Pure and Applied Algebra52 (1988), pp. 297–311.CrossRefGoogle Scholar
  20. [Ra87]
    A.A. Razborov, Lower bounds for the size of circuits of bounded depth with basis {&, ⊕}, Mathematicheskie Zametki41:4 (April 1987), 598–607 (in Russian). English translation Mathematical Notes of the Academy of Sciences of the USSR41:4 (Sept. 1987), pp. 333–338.Google Scholar
  21. [Sc65]
    M.P. Schützenberger, On finite monoids having only trivial subgroups, Information and Control8 (1965), pp. 190–194.CrossRefGoogle Scholar
  22. [Si72]
    I. Simon, Hierarchies of events of dot-depth one, Ph. D. Thesis, University of Waterloo (1972).Google Scholar
  23. [Si83]
    M. Sipser, Borel sets and circuit complexity, Proc. of the 15th ACM Symp. on the Theory of Computing (1983), pp. 61–69.Google Scholar
  24. [Sm87]
    R. Smolensky, Algebraic methods in the theory of lower bounds for Boolean circuit complexity, Proc. of the 19th ACM Symp. on the Theory of Computing (1987), pp. 77–82.Google Scholar
  25. [St78]
    H. Straubing, Varieties of recognizable sets whose syntactic monoids contain solvable groups, Ph. D. Thesis, University of California at Berkeley (1978).Google Scholar
  26. [Th81]
    D. Thérien, Classification of finite monoids: the language approach, Theoretical Computer Science14 (1981), pp. 195,208.CrossRefGoogle Scholar
  27. [Th83]
    D. Thérien, Subword counting and nilpotent groups, in Combinatorics on Words: Progress and Perspectives (L.J. Cummings ed.), Academic Press (1983), pp. 297–305.Google Scholar
  28. [Ya85]
    A. C. Yao, Separating the polynomial-time hierarchy by oracles, Proc. of the 26th IEEE Symp. on the Foundations of Computer Science (1985), pp. 1–10.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • P. McKenzie
    • 1
  • D. Thérien
    • 2
  1. 1.Dép. d'informatique et de recherche opérationnelleUniversité de MontréalMontréalCanada
  2. 2.School of Computer ScienceMcGill UniversityMontrealCanada

Personalised recommendations