Advertisement

Entrenchment relations: A uniform approach to nonmonotonicity

  • Konstantinos Georgatos
Accepted Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1244)

Abstract

We show that Gabbay's nonmonotonic consequence relations can be reduced to a new family of relations, called entrenchment relations. Entrenchment relations provide a direct generalization of epistemic entrenchment and expectation ordering introduced by Gärdenfors and Makinson for the study of belief revision and expectation inference, respectively.

Keywords

Nonmonotonic consequence epistemic entrenchment belief revision 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. E. Alchourrón, P. Gärdenfors, and D. Makinson. On the logic of theory change: partial meet contraction and revision functions. The Journal of Symbolic Logic, 50:510–530, 1985.Google Scholar
  2. 2.
    G. Amati and K. Georgatos. Relevance as deduction: A logical approach to information retrieval. In Proceedings of the 2nd International Workshop on Information Retrieval, Glascow, United Kingdom, 1996. University of Glascow.Google Scholar
  3. 3.
    F. Baader and B. Hollunder. How to prefer more specific defaults in terminological default logic. In R. Bajcsy, editor, Proceedings of the 13th International Joint Conference on Artificial Intelligence (IJCAI), San Mateo, CA, 1993. Morgan Kaufmann.Google Scholar
  4. 4.
    J. Bell. Pragmatic logics. In Proceedings of KR91, pages 50–60, Cambridge, MA, 1991.Google Scholar
  5. 5.
    S. Benferhat, C. Cayrol, D. Dubois, J. Lang, and H. Prade. Inconsistency management and prioritized syntax entailment. In R. Bajcsy, editor, Proceedings of the 13th International Joint Conference on Artificial Intelligence (IJCAI), pages 640–645, San Mateo, CA, 1993. Morgan Kaufmann.Google Scholar
  6. 6.
    A. Bochman. Default consequence relations as a logical framework for logic programs. In Proceedings of the 3rd International Conference on Logic Programming and Nonmonotonic Reasoning, number 928 in LNAI, pages 245–258, Berlin, 1995. Springer.Google Scholar
  7. 7.
    C. Boutilier. Conditional logics for default reasoning. Ph.D. Thesis, 1992.Google Scholar
  8. 8.
    C. Boutilier. Modal logics for qualitative possibility and beliefs. In Proceedings of the 8th Workshop on Uncertainty in Artificial Intelligence, pages 17–24, Stanford, CA, 1992.Google Scholar
  9. 9.
    G. Brewka. Adding priorities and specificity to default logic. In C. MacNish, D. Pearce, and L. M. Pereira, editors, Logics in Artificial Intelligence (JELIA '94), number 838 in Lecture Notes in Computer Science, pages 247–260, Berlin, 1994. Springer-Verlag.Google Scholar
  10. 10.
    L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logics and Data Bases, pages 293–322. Plenum, New York, 1978.Google Scholar
  11. 11.
    J. P. Delgrande. A preference-based approach to default reasoning. Technical report, School of Computing Science, Simon Fraser University, 1994.Google Scholar
  12. 12.
    D. Dubois, J. Lang, and H. Prade. Possibilistic logic. In D. M. Gabbay, C. J. Hogger, and J. A. Robinson, editors, Handbook of Logic in Artificial Intelligence and Logic Programming, volume 3, pages 439–513. Oxford University Press, 1994.Google Scholar
  13. 13.
    D. Dubois and H. Prade. Epistemic entrenchment and possibilistic logic. Artificial Intelligence, 50:223–239, 1991.Google Scholar
  14. 14.
    R. Fagin, J. D. Ullman, and M. Y. Vardi. On the semantics of updates in databases. In Proceedings of the Second ACM SIGACT-SIGMOD, pages 352–365, 1983.Google Scholar
  15. 15.
    L. Farinãs del Cerro, A. Herzig, and J. Lang. From ordering-based nonmonotonic reasoning to conditional logics. Artificial Intelligence, 66:375–393, 1994.Google Scholar
  16. 16.
    M. Freund and D. Lehmann. Belief revision and rational inference. Technical Report TR 94-16, The Leibniz Center for Research in Computer Science, Institute of Computer Science, Hebrew University, July 1994.Google Scholar
  17. 17.
    D. Gabbay. Theoretical foundations for nonmonotonic reasoning in expert systems. In K. Apt, editor, Logics and Models of Concurrent Systems. Springer-Verlag, Berlin, 1985.Google Scholar
  18. 18.
    P. Gärdenfors and D. Makinson. Revisions of knowledge systems using epistemic entrenchment. In Proceedings of the Second Conference on Theoretical Aspects of Reasoning about Knowledge, pages 661–672, 1992.Google Scholar
  19. 19.
    P. Gärdenfors and D. Makinson. Nonmonotonic inference based on expectations. Artificial Intelligence, 65:197–245, 1994.Google Scholar
  20. 20.
    P. Gärdenfors and H. Rott. Belief revision. In D. Gabbay, editor, Handbook of Logic in Artificial Intelligence and Logic Programming, volume II. Oxford University Press, 1994.Google Scholar
  21. 21.
    H. Geffner and J. Pearl. Conditional entailment: Bridging two approaches to default reasoning. Artificial Intelligence, 53:209–244, 1992.Google Scholar
  22. 22.
    K. Georgatos. Preferential inference and revision using partial entrenchment orderings. To appear in the Annals of Pure and Applied Logic.Google Scholar
  23. 23.
    K. Georgatos. Ordering-based representations of rational inference. In J. J. Alferes, L. M. Pereira, and E. Orlowska, editors, Logics in Artificial Intelligence (JELIA '96), number 1126 in Lecture Notes in Artificial Intelligence, pages 176–191, Berlin, 1996. Springer-Verlag.Google Scholar
  24. 24.
    M. L. Ginsberg. Counterfactuals. Artificial Intelligence, 30:35–79, 1986.Google Scholar
  25. 25.
    H. Katsuno and D. Satoh. A unified view of consequence relation, belief revision and conditional logic. In Proceedings of IJCAI-91, pages 406–412, Sydney, Australia, 1991.Google Scholar
  26. 26.
    A. Kratzer. Partition and revision: The semantics of conditionals. Journal of Philosophical Logic, 10:201–216, 1981.Google Scholar
  27. 27.
    S. Kraus, D. Lehmann, and M. Magidor. Nonmonotonic reasoning, preferential models and cumulative logics. Artificial Intelligence, 44:167–207, 1990.Google Scholar
  28. 28.
    P. Lamarre. S4 as the conditional logic of nonmonotonicity. In Proceedings of KR91, pages 357–367, Cambridge, MA, 1991.Google Scholar
  29. 29.
    P. Lamarre. From monotonicity to nonmonotonicity via a theorem prover. In Proceedings of KR92, pages 572–580, Cambridge, MA, 1992.Google Scholar
  30. 30.
    D. Lehmann and M. Magidor. What does a conditional knowledge base entail? Artificial Intelligence, 55:1–60, 1992.Google Scholar
  31. 31.
    D. Lewis. Counterfactuals. Harvard University Press, Cambridge, MA, 1973.Google Scholar
  32. 32.
    V. Lifschitz. Computing circumscription. In Proceedings of the Ninth International Joint Conference on Artificial Intelligence (IJCAI-85), pages 121–127, 1985.Google Scholar
  33. 33.
    S. Lindström. A semantic approach to nonmonotonic reasoning: inference operations and choice. Manuscript, Department of Philosophy, Uppsala University, Uppsala, Sweden, 1990.Google Scholar
  34. 34.
    S. Lindström and W. Rabinowicz. Epistemic entrenchment with incomparabilities and relational belief revision. In A. Fuhrmann and M. Morreau, editors, The Logic of Theory Change, number 465 in Lecture Notes in Artificial Intelligence, pages 93–126, Berlin, 1991. Springer-Verlag.Google Scholar
  35. 35.
    D. Makinson. General theory of cumulative inference. In M. Reinfranck, editor, Non-Monotoning Reasoning, number 346 in Lecture Notes in Artificial Intelligence, pages 1–18. Springer-Verlag, Berlin, 1989.Google Scholar
  36. 36.
    D. Makinson. General patterns in nonmonotonic reasoning. In D. Gabbay, editor, Handbook of Logic in Artificial Intelligence and Logic Programming, volume III. Oxford University Press, 1994.Google Scholar
  37. 37.
    D. Makinson and P. Gärdenfors. Relations between the logic of theory change and nonmonotonic logic. In A. Fuhrmann and M. Morreau, editors, The Logic of Theory Change, number 465 in Lecture Notes in Artificial Intelligence, pages 185–205, Berlin, 1991. Springer-Verlag.Google Scholar
  38. 38.
    W. V. Marek, A. Nerode, and J. B. Remmel. Nonmonotonic rule systems I. Annals of Mathematics and Artificial Intelligence, 1:241–273, 1990.Google Scholar
  39. 39.
    J. McCarthy. Circumscription: A form of non-monotonic reasoning. Artificial Intelligence, 13:27–39, 1980.Google Scholar
  40. 40.
    D. McDermott and J. Doyle. Non-monotonic logic I. Artificial Intelligence, 13:41–72, 1980.Google Scholar
  41. 41.
    A. C. Nayak. Iterated belief change based on epistemic entrenchment. Erkenntnis, 41:353–390, 1994.Google Scholar
  42. 42.
    A. C. Nayak, N. Y. Foo, M. Pagnucco, and A. Satar. Changing conditional beliefs unconditionally. In Proceedings of the TARK 96 Conference, pages 119–135, 1996.Google Scholar
  43. 43.
    J. Pearl. System Z: a natural ordering of defaults with tractable applications to default reasoning. In Proceedings of the 3rd Conference on Theoretical Aspects of Reasoning about Knowledge, pages 121–135, Pacific Grove, CA, 1990.Google Scholar
  44. 44.
    R. Reiter. A logic for default reasoning. Artificial Intelligence, 2:147–187, 1980.Google Scholar
  45. 45.
    N. Rescher. Hypothetical Reasoning. North-Holland, Amsterdam, 1964.Google Scholar
  46. 46.
    H. Rott. Preferential belief change using generalized epistemic entrenchment. Journal of Logic, Language and Information, 1:45–78, 1992.Google Scholar
  47. 47.
    M. Ryan. Ordered presentation of theories. Ph.D. Thesis, 1992.Google Scholar
  48. 48.
    Y. Shoham. Reasoning about Change. MIT Press, Cambridge, 1988.Google Scholar
  49. 49.
    R. Stalnaker. A theory of conditionals. In N. Rescher, editor, Studies in Logical Theory. Oxford University Press, Oxford, 1968.Google Scholar
  50. 50.
    D. S. Touretzky. The Mathematics of Inheritance Systems. Research Notes in Artificial Intelligence. Morgan Kaufmann, Los Altos, California, 1986.Google Scholar
  51. 51.
    F. Veltman. Prejudices, presuppositions and the theory of counterfactuals. In J. Groenendijk and M. Stokhof, editors, Amsterdam Papers in Formal Grammar, volume I. University of Amsterdam, 1976.Google Scholar
  52. 52.
    M.-A. Williams. On the logic of theory base change. In C. MacNish, D. Pearce, and L. M. Pereira, editors, Logics in Artificial Intelligence (JELIA '94), number 838 in Lecture Notes in Computer Science, pages 86–105, Berlin, 1994. Springer-Verlag.Google Scholar
  53. 53.
    W. Wobcke. On the use of epistemic entrenchment in nonmonotonic reasoning. In Proceedings of ECAI-92, pages 324–328, Vienna, Austria, 1992.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Konstantinos Georgatos
    • 1
  1. 1.Dipartimento di Informatica e SistemisticaUniversitá di Roma “La Sapienza”RomaItaly

Personalised recommendations