Advertisement

Method for knowledge acquisition from multiple experts

  • Sofiane Labidi
  • Mohamed Mohsen Gammoudi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 991)

Abstract

In this paper, we present a method for knowledge acquisition from several experts. This method is based on a set of generic models which serve as a template to the knowledge engineer when acquiring knowledge from multiple experts. Experts are described as a society of interacting cognitive agents by instantiating the models. Our work can be viewed as an extension of KADS (Knowledge-based system Analysis and Design Structured methodology) [Schreiber &al. 94] to the multi-expertise.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AAAI 91]
    Proceedings of the AAAI Spring Symposium on Design of Composite Systems. Stanford, CA. March 1991.Google Scholar
  2. [Bond &al. 88]
    A. Bond and L. Gasser Editors. Readings in Distributed Artificial Intelligence. Morgan Kaufmann. 1988.Google Scholar
  3. [Bond 90]
    A. H. Bond. Distributed Decision Making in Organisation. IEEE Transactions on Systems, Man and Cybernetics Conference. November 1990.Google Scholar
  4. [Demazeau &al. 90]
    Y. Demazeau and J.-P. Muller. Decentralized Artificial Intelligence. In Decentralized A.I., 1. Editors Y. Demazeau and J.-P. Muller. North Holland Elseiver Science Publishers, pp 3–13. 1990.Google Scholar
  5. [Dieng &al. 94]
    R. Dieng, O. Corby and S. Labidi. Expertise conflicts in Knowledge Acquisition. In Proceedings of the Banff workshop on knowledge acquisition (KAW'94). Banff, Canada. January 30–February 4, 1994.Google Scholar
  6. [Ferber &al. 88]
    J. Ferber et M. Ghallab. Problématiques des univers multi-agents intelligents. Actes des journées nationales PRC-GRECO Intelligence Artificielle, pp. 295–320. Toulouse. Mars 1988.Google Scholar
  7. [Gaines &al. 89]
    B. R. Gaines and M. L. G. Shaw. Comparing the Conceptual Systems of Experts. Proceedings of the 11th IJCAI (IJCAI'89). pp. 633–638. Detroit. 1989.Google Scholar
  8. [Gammoudi &al. 94]
    M. Gammoudi and S. Labidi. An automatic generation of consensual rules between several experts using the rectangular decomposition method of a binary relation. Proceedings of the XI Brazilian Symposium on Artificial Intelligence (SBIA'94). Fortaleza. October 17–20, 1994.Google Scholar
  9. [Jagannathan &al. 85]
    V. Jagannathan and A. S. Elmaghraby. MEDKAT: Multiple Expert Delphi-Based Knowledge Acquisition Tool. In Proceedings of the ACM NE Regional Conference, Boston, MA. pp. 103–110. October 1985.Google Scholar
  10. [Labidi &al. 93]
    S. Labidi et W. Lejouad. De l'intelligence artificielle distribuée aux systèmes multi-agents. Rapport de recherche INRIA. N∘ 2004. Août 1993.Google Scholar
  11. [Linton 77]
    R. Linton. Le fondement culturel de la personnalité. Paris, Dunod. 1977.Google Scholar
  12. [Linstone &al. 75]
    H. A. Linstone and M. Turoff. The Delphi Method: Techniques and Applications. Addison-Wesley. 1975.Google Scholar
  13. [Liou &al. 90]
    Y. I. Liou, E. S. Weber and J. F. Nunamaker. A methodology for knowledge acquisition in a group decision support system environment. Knowledge Acquisition. 2. june 1990.Google Scholar
  14. [McGraw &al. 87]
    K. L. McGraw and M. R. Seale. Multiple experts knowledge acquisition methodology: MEKAM. In 3rd Australian Conference on Expert Systems. pp. 165–197. 1987.Google Scholar
  15. [McGraw &al. 88]
    K. L. McGraw and M. R. Seale. Knowledge elicitation with multiple experts: considerations and techniques. Artificial Intelligence Review. (2):31–44. 1988.CrossRefGoogle Scholar
  16. [Mintzberg 86]
    G. H. Mintzberg. Structure et dynamique des organisations. Les édition d'organisation, Paris. Les éditions Agence d'ARC Inc. Montréal. 1986.Google Scholar
  17. [Mittal &al. 85]
    S. Mittal and C. L. Dym. Knowledge acquisition from multiple experts. Artificial Intelligence Magazine, pp. 32–36. 1985.Google Scholar
  18. [Murray &al. 90]
    K. S. Murray and B. W. Porter. Developing a tool for knowledge integration: initial results. International Journal of Man-Machine Studies. (33):373–383. 1990.Google Scholar
  19. [Newell 81]
    A. Newell. The Knowledge Level. Artificial Intelligence. 18:87–127. 1981.CrossRefGoogle Scholar
  20. [Schreiber &al. 94]
    G. Schreiber, B. J. Wielinga, H. Akkermans, W. Van de Velde and R. de Hoog. CommonKADS: a Comprehensive Methodology for KBS Development. IEEE Expert. 6(9). December 1994.Google Scholar
  21. [Searle 79]
    J. R. Searle. Expressions and Meaning. Taxonomy of illocutionary Acts. Chapter 1. Cambridge University Press. 1979.Google Scholar
  22. [Shaw 76]
    M. E. Shaw. Group Dynamics: the psychology of small group behavior. (2nd edition) New York. McGraw-Hill Book Company. 1976.Google Scholar
  23. [Wærn &al. 93]
    A. Wærn and S. Gala. The Common KADS Agent Model. Technical Report. University of Amsterdam. Deliverable Id. KADS-II/M4/TR/SICS/002/ V.1.1. May 21, 1993.Google Scholar
  24. [Wolf 89]
    W. A. Wolf. Knowledge acquisition from multiple experts. Sigart Newsletter. (108): 138–140. April 1989.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Sofiane Labidi
    • 1
    • 2
  • Mohamed Mohsen Gammoudi
    • 2
    • 3
  1. 1.ACACIA ProjectINRIA Sophia AntipolisSophia Antipolis CedexFrance
  2. 2.Grupo da Ciência da ComputaçãoUniversidade Federal do MaranhãoSão Luis-MABrasil
  3. 3.Faculté des Sciences de TunisUniversité de Tunis IIBelvédèreTunisie

Personalised recommendations