Advertisement

Cast system approach for visual inspection

  • Candela S. 
  • Garcia C. 
  • Alayon F. 
  • Muñoz J. 
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1030)

Abstract

Begining with the concepts and techniques of Artificial Vision and Systems Theory, the main goal of this paper is the analysis and synthesis of a formal general model to be the base for the design of visual automatic inspection systems and its implementation and testing in a real case of fault detection using digital images acquired through a camera-computer chain.

Keywords

Visual Inspection Texture Changes Artificial Vision Fault Detection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Pichler, F. Computer Aided System Theory: A Framework for Interactive Method Banks. Cybernetics and Systems. 88. pp 731–736.The Netherlands 1988.Google Scholar
  2. [2]
    Candela, S., Muñoz, J., Alayon, F., Garcia C. Un Sistema de Visión para la Detección de Defectos.Actas de Panel'92 p 240–247. Las Palmas de G. Canaria. 1992. Universidad de Las Palmas de Gran CanariaGoogle Scholar
  3. [3]
    Unser, M., Coulon, F. Detection of Defects by Texture Monitoring in Automatic Visual Inspection. Proceedings of The 2md International Conference on Robot Vision and Sensory Controls November 1982. Stuttgart, Germany.Google Scholar
  4. [4]
    Muñoz Blanco, J. A. “Jerarquización de estructuras de nivel bajo y medio para reconocimiento visual. Aplicaciones a texturas y formas. Tesis Doctoral. 1987.Google Scholar
  5. [5]
    Wang, L.; and D. He. “Texture Classification Using Texture Spectrum”. Pattern Recognition”. 1990.Google Scholar
  6. [6]
    Amelia C. Fong, Lionel M. Ni, Kwan Y. Wong “Fast Discrimination Between Homogeneous and Texture Regions”.Google Scholar
  7. [7]
    García, C. Estructuras de Representación Visual Múltiple. Aplicación a la Detección de Variaciones Locales en Texturas y a la Inspección Visual. Tesis Doctoral. 1995.Google Scholar
  8. [8]
    Muñoz, J., Garcia, C., Alayon, F., Candela, S. Systems Concepts for Visual Texture Change Detection Strategy. Lecture Notes in Computer Science 763. pp 358–366. 1994.Google Scholar
  9. [9]
    Candela, S., Garcia, C., Muñoz, J., Alayon, F. Facilitatory Process for Contrast Detection. Lecture Notes in Computer Science 720. pp 627–630. 1993.Google Scholar
  10. [10]
    Borghesi, V. Cantoni, M. Diani.“An Industrial Application of Texture Analysis”.Google Scholar
  11. [11]
    Conners, R. Identifying and Locating Surface Defects in Wood: Part of an Automated Lumber Processing System. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.Pami-5, No 6, November 1983.Google Scholar
  12. [12]
    Ade, F. “Application of principal component analisys to the inspection of industrial goods”. Applications of Digital Image Processing, vol 397, pag 216–223, SPIE 1983.Google Scholar
  13. [13]
    Siew, H., Hodgson, R. “Texture Measures for Carpet Wear Assesment”. Transactions on Pattern Analisys and Machine Intelligence. vol 10,n1.IEEE Computer Society Press. 1988.Google Scholar
  14. [14]
    Neubauer, C. “Segmentation of Defects in Textile Fabric”. International Conference on Pattern Recognition Proceeding, pp 688–691. IEEE Computer Society Press. 1992.Google Scholar
  15. [15]
    Haralick, R. Statistical and Structural Approaches to Texture. Proceedings of the IEEE, vol 67, no 5, May 1979.Google Scholar
  16. [16]
    Calvin C. Gotlieb, Helbert E. Kreyszig.“Texture Descriptors Based on Co-Ocurrences Matrices”. Computer Vision, Graphics, and Image Processing. Academic Press, Inc. 1990.Google Scholar
  17. [17]
    Rao, K., Ahmed, N. Orthogonal Transforms for Digital Signal Processing. IEEE International Conference on Acustics, Speech and Signal Processing P 136–40, 1976.Google Scholar
  18. [18]
    D'Astous and M. E. Jernigan. “Texture Discrimination Based On Detailed Measures Of Power Spectrum”. IEEE. 1984.Google Scholar
  19. [19]
    Eklundh, J. O. “On The Use of Fourier Features for Texture Discrimination”. Computer Graphics and Image Processing. 1979.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Candela S. 
    • 1
  • Garcia C. 
    • 1
  • Alayon F. 
    • 1
  • Muñoz J. 
    • 1
  1. 1.Department of Informática y SistemasUniversity of Las Palmas de Gran CanariaLas PalmasCanary Islands, 35017 Spain

Personalised recommendations