On the structure of discrete systems

  • Rudolf F. Albrecht
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1030)


The intention of this article is to present a general, uniform and concise mathematical framework for modelling of systems, especially discrete systems. As basic structures families and relations, defined as families of families represented in parameterized form, are used, which allows the representation of dual and polymorphic relations. On these structures structors are applied to obtain higher level structures, parts of these, and lower level structures from higher level structures. Considered are the π-product, selection of sub structures by properties, concatenations of relations subject to constraints. Treated are structures on index sets, topological structures, valuated structures, in particular fuzzy sets, sets of times as complete atomic boolean lattices with ordered atoms and induced orderings on the times, coarsenings of a time set, processes and their interactions, refinement and coarsenings of processes, and variables with their assignment operators. Most of our definitions are more general than those in literature. Relationships between various systems in applications are pointed out and illustrated by examples.


System Theory Modelling of Discrete Systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albrecht, R. F.: Some Basic Concepts of Object Oriented Databases. System Science 20, No. 1, Wroclaw, (1994)Google Scholar
  2. 2.
    Albrecht, R. F.: Modelling of Computer Architecures. Proc. Conf. on Massively Parallel Computing Systems, IEEE Computer Society Press, Los Alamitos California (1994)Google Scholar
  3. 3.
    Albrecht, R. F.: Modelling of Discret Systems. Proceedings of the 1994 Human Interaction with Complex Systems Symposium, Greensboro (1994)Google Scholar
  4. 4.
    Allen, J. F.: Towards a General Theory of Actions and Time. Artificial Intelligence 23 (1984), 123–154Google Scholar
  5. 5.
    Birkhoff, G.: Lattice Theory. American Mathematical Society Colloquium Publications, Vol. XXV, Providence, Rhode Island (1973)Google Scholar
  6. 6.
    Bourbaki, N.: Théorie des Ensembles. In: Hermann & Cde. (eds.), Paris (1954)Google Scholar
  7. 7.
    Bourbaki, N.: Topologie Général. In: Hermann & Cde. (eds.), Paris (1951)Google Scholar
  8. 8.
    Fenton, N. E., Hill, G. A. F.: Systems Construction and Analysis: Mathematical and Logical Framework. London: McGraw-Hill 1993Google Scholar
  9. 9.
    Klir, G. J., Folger, T. A.: Fuzzy Sets, Uncertainty, and Information. State University of New York (1988)Google Scholar
  10. 10.
    Mesarovic, M. D., Takahara, Y.: Abstract Systems Theory: Berlin, Heidelberg: Springer 1989Google Scholar
  11. 11.
    Nauck, D., Klawonn, F., Kruse, R.: Neuronale Netze und Fuzzy-Systeme. Braunschweig: Vieweg 1994Google Scholar
  12. 12.
    Nöbeling, G.: Grundlagen der Analytischen Topologie. Berlin, Göttingen, Heidelberg: Springer 1954Google Scholar
  13. 13.
    Tremblay, J.-P., Manohar, R.: Discrete Mathematical Structures with Applications to Computer Science, McGraw-Hill 1975Google Scholar
  14. 14.
    Wille, R.: Bedeutungen von Begriffsverbänden. In: Ganter, B., Wille, R., Wolf, K. E. (eds.): Beiträge zur Begriffsanalyse. Mannheim, Wien, Zürich: B.I.-Wisschenschaftsverlag 1987, 161–211Google Scholar
  15. 15.
    Zeigler, B. P.: Multifacetted Modelling and Discrete Event Simulation. Academic Press Inc., London (1984)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Rudolf F. Albrecht
    • 1
  1. 1.Institut für InformatikUniversität InnsbruckInnsbruckAustria

Personalised recommendations