An algebra for a temporal object data model

  • L. Wang
  • M. Wing
  • C. Davis
  • N. Revell
Theoretical Aspects 2
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1134)


In this paper, we present a temporal object data model, which has been adapted from the unified model of OODB and RDB in UniSQL/X so that a time dimension can be easily added to form temporal relational-like cubes but with aggregation and inheritance hierarchies. A query algebra, that accesses objects through the associations of aggregation, inheritance and time-reference, is thereby defined. Due to the adaptation of the unified model of RDB and OODB, the temporal object data model supports both homogeneity and heterogeneity in the time dimension, and the algebra reflects the spirit of both temporal relational algebra and object algebra. Data query examples through “The Wood Panel Deformation Measurement Database” illustrate algebraic operations and a brief evaluation of algebra has been given.


Object-oriented databases temporal object query algebra 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Alhajj and M. E. Arkun. A query model for object-oriented databases. Proc. of 9th Int. Conf. on Data Engineering, p163–172, 1993.Google Scholar
  2. 2.
    E. Bertino and L. Martino. Object-Oriented Database Systems: Concepts and Architectures. Addison-Wesley Publishers Ltd., 1993.Google Scholar
  3. 3.
    J. Chen, T. A. Clarke and S. Robson. Optimised target matching based on a 3-D space intersection and a constrained search for multiple camera views. Videometrics III, SPIE Proc., Vol 2350, p 324–335, 1994.Google Scholar
  4. 4.
    A. Clarke, et al. Automated three dimensional measurement using multiple CCD camera views. The Photogrammetric Record, 15(85): 27–42, 1995.CrossRefGoogle Scholar
  5. 5.
    J. Clifford, et al. The historical relational data model (HRDM) revisited. Temporal Databases: Theory, Design, and Implementation (edited by A.U.Tansel, et al.), p6–27. Benjamin/Cummings, 1993.Google Scholar
  6. 6.
    S. Cluet and C Delobel. Towards a unification of rewrite-based optimization techniques for object-oriented queries. Query Processing for Advanced Database Systems (edited by J. Freytag, et al.). Morgan Kaufmann, 1994.Google Scholar
  7. 7.
    C. J. Date. An Introduction to Database Systems, 6th Edition. Addison-Wesley, 1995.Google Scholar
  8. 8.
    S. K. Gadia. A homogeneous relational model and query languages for temporal databases. ACM Trans. on Database Systems, 13(4): 418–448, 1988.CrossRefGoogle Scholar
  9. 9.
    W. Kim. A model of queries for object-oriented databases. Proc. of the 5th Int. Conf. on VLDB, p423–432, Amsterdam, 1989.Google Scholar
  10. 10.
    W. Kim. Object-oriented databases systems: promises, reality, and future. Proc. of the 19th Int. Conf. on VLDB, p 676–687, Dublin, Ireland, 1993.Google Scholar
  11. 11.
    W. Kim. Next-generation database systems: objects and beyond. Proc. of IISF/ACM Japan Int. Symposium, Computers as our Better Partners, p188–196, Tokyo, Japan, March 1994. World Scientific Publishing.Singapore.Google Scholar
  12. 12.
    M. T. Ozsu and J. A. Blakeley. Query processing in object-oriented database system. Modern Database Systems: the Object Model, Interoperability, and Beyond, (edited by W. Kim), p146–174. ACM Press, 1995.Google Scholar
  13. 13.
    N. Pissinou, et al. On temporal modelling in the context of object databases. SIGMOD RECORD, 22(3): 8–15, Setp. 1993.CrossRefGoogle Scholar
  14. 14.
    N. Pissinou, et al. Towards an infrastructure for temporal databases: report of an invitational ARPA/NSF workshop. SIGMOD RECORD, 23(1): 35–51, March 1994.CrossRefGoogle Scholar
  15. 15.
    S. Robson, et al. Seeing the wood from the trees-an example of optimised digital photogrammetric deformation detection. ISPRS Intercommission Workshop: From Pixels to Sequences-Sensors, Algorithms, and Systems, Vol 30/5W1, p379–384, 1995.Google Scholar
  16. 16.
    S. K. Gadia and S. S. Nair, Temporal databases: a preclude to parametric data, Temporal Databases: Theory, Design, and Implementation (edited by A. U. Tansel, et al.), p28–66. Benjamin/ Cummings Publishing, 1993.Google Scholar
  17. 17.
    G. M. Shaw and S. B. Zdonik. A query algebra for object-oriented databases. Proc. of 6th Int. Conf. on Data Engineering, p 154–162, 1990. IEEE.Google Scholar
  18. 18.
    R. Snodgrass. Temporal object-oriented databases: a critical comparison. Modern Database Systems: the Object Model, Interoperability, and Beyond, (edited by W. Kim), p 386–408. ACM Press, 1995Google Scholar
  19. 19.
    M. Stonebraker, L. Rowe, and M. Hirohama. The implementation of POSTGRES. IEEE Trans. on Knowledge and Data Engineering, 2(1): 125–142, 1990.CrossRefGoogle Scholar
  20. 20.
    D. D. Straube and M. T. Ozsu. Queries and query processing in object-oriented database systems. ACM Trans. on Information Systems, 8(4): 387–430, 1990.CrossRefGoogle Scholar
  21. 21.
    A. U. Tansel. A generalized relational framework for modelling temporal data. Temporal Databases: Theory, Design, and Implementation (edited by A. U. Tansel, et al.), p183–201. Benjamin/ Cummings Publishing, 1993.Google Scholar
  22. 22.
    L. Wang, M. Wing, C. Davis and N. Revell. Query processing in object-oriented databases. Proc. of 13th European Meeting on Cybernetics and Systems Research, p803–808, April 9–12, 1996, Vienna, Austria.Google Scholar
  23. 23.
    L. Wang, M. Wing, C. Davis, N. Revell and J. Chen. Data modeling and management in sequential image databases: a temporal object-oriented approach. IEE Colloquium Digest on Intelligent Image Databases, p1/1-6, 96.Google Scholar
  24. 24.
    L. Yu and S. L. Osborn. An evaluation framework for algebraic object-oriented query models. Proc. of 7th Int. Conf. on Data Engineering, p 670–677, 1991. IEEE.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • L. Wang
    • 1
  • M. Wing
    • 1
  • C. Davis
    • 1
  • N. Revell
    • 1
  1. 1.School of Computing ScienceMiddlesex UniversityLondonUK

Personalised recommendations