Mining type schemes in databases

  • Takao Miura
  • Isamu Shioya
Advanced Database and Information System Methods 3
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1134)


We propose a heuristic method to mine type scheme semiautomatically from initial database scheme and the instances. Unlike conventional database design methods, the proposed one starts from examining database entities.

We assume one entity may have more than one types and classification (or type scheme) might be appropriate when each entity is classified into ast most k (least general) classes with respect to ISA hierarchy. Clearly, from the view point of database technique, it is suitable for each entity to keep limited number of type informations.

Our method differs from others in evolving ISA hierarchy by introducing semantical metric. We propose a sophisticated algorithm to evolve type schemes.


Data Mining Knowledge Acquisition Type Schemes UNIFY algorithm Scheme Evolution Knowledge-Based Systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, R., Ghosh, S. et al.: An Interval Classifier for Database Mining Applications, proc. VLDB (1992), 560–573Google Scholar
  2. 2.
    Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules, proc.VLDB (1994), 487–499Google Scholar
  3. 3.
    Cai, Y., Cercone, N. and Han, J.: An Attribute-Oriented Approach for Learning Classification Rules from Relational Databases, proc.ICDE (1990), 281–288Google Scholar
  4. 4.
    Cai, Y., Cercone, N. and Han, J.: An Attribute-Oriented Induction in Relational Databases, in [18], 213–228Google Scholar
  5. 5.
    Elmasri, R. and Navathe, S.: Fundamentals of Database Systems, Benjamin, 1989Google Scholar
  6. 6.
    Frawley, W.J., Piatetsky-Shapiro, G. and Matheus, C.J.: Knowledge Discovery in Databases — An Overview, in [18], 1–30Google Scholar
  7. 7.
    Han, J., Cai, Y. and Cercone, N.: Knowledge Discovery in Databases: An Attribute-Oriented Approach, proc. VLDB (1992), 547–559Google Scholar
  8. 8.
    Ioannidis, Y. and Lashkari, Y.: Incomplete Path Expressions and their Disambiguation, proc.SIGMOD (1994), 138–149Google Scholar
  9. 9.
    Michalski, R. et al.: Machine Learning (Vol. 1–4), Morgan KauffmanGoogle Scholar
  10. 10.
    Mineau,G.,Gecsei, J. and Godin, R.: Structuring Knowledge Bases Using Automatic Learning, proc.ICDE (1990), 274–280Google Scholar
  11. 11.
    Miura, T. and Ariswa, H.: Logic Approach of Data Models, proc.Future Databases (1990), 145–159Google Scholar
  12. 12.
    Miura, T.: Database Paradigms towards Model Buildings, proc.Object Role Modelling (1994)Google Scholar
  13. 13.
    Miura, T. and Shioya, I.: Strategy Control for Database Queries, proc.DEXA (1995), 231–240Google Scholar
  14. 14.
    Ng, R. and Han, J.: Efficient and Effective Clustering Methods for Spacial Data Mining, proc. VLDB (1994), 144–155Google Scholar
  15. 15.
    Ohsuga, S.: How can knowledge-based systems solve large-scale problems ?: Model-based decomposition and problem solving, Knowledge-Based Systems 6-1 (1993), 38–62CrossRefGoogle Scholar
  16. 16.
    Quinlan, R.: Induction of Decision Trees, Machine Learning 1-1 (1986), 81–106Google Scholar
  17. 17.
    Quinlan, R.: Learning Logical Definition from Rules, Machine Learning 5-3 (1990), 239–266Google Scholar
  18. 18.
    Piatetsky-Shapiro, G. and Frawley, W.J. (ed.): Knowledge Discovery in Databases, MIT Press (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Takao Miura
    • 1
  • Isamu Shioya
    • 1
  1. 1.KamikasuyaSANNO CollegeKanagawaJapan

Personalised recommendations