An extremal problem related to the covering radius of binary codes

  • G. Zémor
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 573)


We introduce an extremal problem akin to the search for the parameters of binary linear codes of minimal distance 3 and the largest possible covering radius; we solve the problem in some cases, give some bounds, and also show how it relates to the construction of good codes with distance 3.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [CGM.83]
    G.D. Cohen, P. Godlewski, and F. Merkx, “Linear Block Codes for Write-Once Memories”, IEEE Trans. on Inf. Theory, IT 29, 3, (1983) 731–739.Google Scholar
  2. [God.87]
    P. Godlewski, “WOM-codes construits à partir des codes de Hamming”, Discrete Math., 65 (1987), 237–243.CrossRefGoogle Scholar
  3. [McS.77]
    F.J. Mac Williams and N.J.A. Sloane, “The Theory of Error-Correcting Codes” 1977 North Holland Amsterdam.Google Scholar
  4. [Man.65]
    H.B. Mann, “Addition theorems”, 1965 Wiley New-York.Google Scholar
  5. [RiS.82]
    R.L. Rivest and A. Shamir, “How to reuse a “Write Once” Memory”, Inf. and Control 55, (1982), 1–19.CrossRefGoogle Scholar
  6. [Zem.89]
    G. Zémor, “Problèmes combinatoires liés à l'écriture sur des mémoires” Phd dissertation, Nov. 1989.Google Scholar
  7. [ZeC.91]
    G. Zémor and G. Cohen, “Error-Correcting WOM-codes”, IEEE Trans. on Inf. Theory, IT 37, 3, (1991) 730–735.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • G. Zémor
    • 1
  1. 1.Dept. RéseauxE.N.S.T.Paris Cedex 13France

Personalised recommendations