Skip to main content

The interrelationship between sodium and calcium fluxes across cell membranes

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology, Volume 70

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 70))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, T. H., Norman, A. W.: Studies on the mechanism of action of calciferol. I. Basic parameters of vitamin D-mediated calcium transport. J. biol. Chem. 245, 4421–4431 (1970).

    PubMed  Google Scholar 

  • Antoniou, L. D., Eisner, G. M., Slotkoff, L. M., Lilienfield, L. S.: Relationship between sodium and calcium transport in the kidney. J. Lab. clin. Med. 74, 410–420 (1969).

    PubMed  Google Scholar 

  • Armstrong, C. M., Bezanilla, F. M., Horowicz, P.: Twitches in the presence of ethylene glycol bis (β-aminoethyl ether)-N,N′-tetraacetic acid. Biochim. biophys. Acta (Amst.) 267, 605–608 (1972).

    PubMed  Google Scholar 

  • Ashley, C. C., Caldwell, P. C., Lowe, A. G.: The efflux of calcium from single crab and barnacle muscle fibres. J. Physiol. (Lond.) 223, 737–755 (1972).

    Google Scholar 

  • Baker, P. F.: Transport and metabolism of calcium ions in nerve. Prog. Biophys. molec. Biol. 24, 177–223 (1972).

    Article  Google Scholar 

  • Baker, P. F., Blaustein, M. P.: Sodium-dependent uptake of calcium by crab nerve. Biochim. biophys. Acta (Amst.) 150, 167–170 (1968).

    PubMed  Google Scholar 

  • Baker, P. F., Blaustein, M. P., Hodgkin, A. L., Steinhardt, R. A.: The influence of calcium on sodium efflux in squid axons. J. Physiol. (Lond.) 200, 431–458 (1969a).

    PubMed  Google Scholar 

  • Baker, P. F., Blaustein, M. P., Keynes, R. D., Manil, J., Shaw, T. I., Steinhardt, R. D.: The ouabain-sensitive fluxes of sodium and potassium in squid giant axons. J. Physiol. (Lond.) 200, 459–496 (1969b).

    PubMed  Google Scholar 

  • Baker, P. F., Crawford, A. C.: Mobility and transport of magnesium in squid giant axons. J. Physiol. (Lond.) 227, 855–874 (1972).

    PubMed  Google Scholar 

  • Baker, P. F., Glitsch, H. G.: Does metabolic energy participate directly in the Na+-dependent extrusion of Ca2+ ions from squid giant axons? J. Physiol. (Lond.) 233, 44–46 p (1973).

    Google Scholar 

  • Baker, P. F., Hodgkin, A. L., Ridgeway, E. B.: Depolarization and calcium entry in squid axons. J. Physiol. (Lond.) 218, 709–755 (1971).

    PubMed  Google Scholar 

  • Banks, P.: The effect of ouabain on the secretion of catecholamines and on the intracellular concentration of potassium. J. Physiol. (Lond.) 193, 631–637 (1967).

    Google Scholar 

  • Banks, P., Biggins, R., Bishop, R., Christian, B., Currie, N.: Sodium ions and the secretion of catecholamines. J. Physiol. (Lond.) 200, 797–805 (1969).

    PubMed  Google Scholar 

  • Bates, R. G., Staples, B. R., Robinson, R. A.: Ionic hydration and single ion activities in unassociated chlorides at high ionic strengths. Anal. Chem. 42, 867–871 (1970).

    Article  Google Scholar 

  • Biamino, G., Johansson, B.: Effects of calcium and sodium on contracture tension in the smooth muscle of the rat portal vein. Pflügers Arch. ges. Physiol. 321, 143–158 (1970).

    Article  Google Scholar 

  • Bianchi, C. P.: Cell Calcium. London: Butterworths 1968.

    Google Scholar 

  • Bianchi, C. P., Shanes, A. M.: Calcium influx in skeletal muscle at rest, during activity, and during potassium contracture. J. gen. Physiol. 42, 805–815 (1959).

    Article  Google Scholar 

  • Birks, R. I., Cohen, M. W.: Effects of sodium on transmitter release from frog motor nerve terminals. In: Paul, W. M., Daniel, E. E., Kay, C. M., Monkton, G.: Muscle, p. 403–420. London Pergamon Press 1965.

    Google Scholar 

  • Birks, R. I., Cohen, M. W.: The action of sodium pump inhibitors on neuromuscular transmission. Proc. roy Soc. B 170, 381–399 (1968 a).

    Google Scholar 

  • Birks, R. I., Cohen, M. W.: The influence of internal sodium on the behaviour of motor nerve terminals. Proc. roy Soc. B 170, 401–421 (1968b).

    Google Scholar 

  • Blake, A., Leader, D. P., Whittam, R.: Physical and chemical reactions of phosphates in red cell membranes in relation to active transport. J. Physiol. (Lond.) 193, 467–479 (1967).

    PubMed  Google Scholar 

  • Blaszkowski, T. P., Bogdanski, D. F.: Possible role of sodium and calcium ions in retention and physiological release of norepinephrine by adrenergic nerve endings. Biochem. Pharmacol. 20, 3281–3294 (1971).

    Article  PubMed  Google Scholar 

  • Blaustein, M. P.: Preganglionic stimulation increases calcium uptake by sympathetic ganglia. Science 172, 391–393 (1971).

    PubMed  Google Scholar 

  • Blaustein, M. P., Hodgkin, A. L.: The effect of cyanide on the efflux of calcium from squid axons. J. Physiol. (Lond.) 200, 497–527 (1969).

    PubMed  Google Scholar 

  • Blaustein, M. P., Johnson, E. M., Jr., Needleman, P.: Calcium-dependent norepinephrine release from presynaptic nerve endings in vitro. Proc. nat. Acad. Sci. (Wash.) 69, 2237–2240 (1972).

    PubMed  Google Scholar 

  • Blaustein, M. P., Oborn, C. J.: The influence of sodium on calcium fluxes in pinched-off nerve terminals in vitro. Manuscript in preparation.

    Google Scholar 

  • Blaustein, M. P., Russell, J. M.: Calcium efflux from barnacle muscle fibers: Dependence on external cations. Manuscript in preparation.

    Google Scholar 

  • Blaustein, M. P., Russell, J. M., DeWeer, P.: Calcium efflux from internally-dialyzed squid axons: the influence of external and internal cations. J. Supramolec. Struct., in press.

    Google Scholar 

  • Blaustein, M. P., Wiesmann, W. P.: Effect of sodium ions on calcium movements in isolated synaptic terminals. Proc. nat. Acad. Sci. (Wash.) 66, 664–671 (1970).

    PubMed  Google Scholar 

  • Bohr, D. F.: Electrolytes and smooth muscle contraction. Pharmacol. Rev. 16, 85–111 (1964).

    PubMed  Google Scholar 

  • Borle, A. B.: Membrane transfer of calcium. Clin. Orthop. 52, 267–291 (1967).

    PubMed  Google Scholar 

  • Borle, A. B.: Kinetic analysis of calcium movements in HeLa cell cultures. II. Calcium efflux. J. gen. Physiol. 53, 57–69 (1969).

    Article  PubMed  Google Scholar 

  • Boulpaep, E. L.: Permeability changes of the proximal tubule of Necturus during saline loading. Amer. J. Physiol. 222, 517–531 (1972).

    PubMed  Google Scholar 

  • Boulpaep, E. L., Seely, J. F.: Electrophysiology of proximal and distal tubules in the auto-perfused dog kidney. Amer. J. Physiol. 221, 1084–1096 (1971).

    PubMed  Google Scholar 

  • Brink, F.: The role of calcium ions in neural processes. Pharmacol. Rev. 6, 243–298 (1954).

    PubMed  Google Scholar 

  • Brinley, F. J., Jr.: Sodium and potassium fluxes in isolated barnacle muscle fibers. J. gen. Physiol. 51, 445–477 (1968).

    Article  PubMed  Google Scholar 

  • Brinley, F. J., Jr., Mullins, L. J.: Sodium extrusion by internally dialyzed squid axons. J. gen. Physiol. 50, 2303–2331 (1967).

    Article  PubMed  Google Scholar 

  • Brown, J. E., Lisman, J. E.: An electrogenic sodium pump in Limulus ventral photoreceptor cells. J. gen. Physiol. 59, 720–733 (1970).

    Article  Google Scholar 

  • Brunette, M., Aras, M.: A microinjection study of nephron permeability to calcium and magnesium. Amer. J. Physiol. 221, 1442–1448 (1971).

    PubMed  Google Scholar 

  • Bull, R. J., Trevor, A. J.: Sodium and the flux of calcium ions in electrically-stimulated cerebral tissue. J. Neurochem. 19, 1011–1022 (1972).

    PubMed  Google Scholar 

  • Burg, M. B., Orloff, J.: Oxygen consumption and active transport in separated renal tubules. Amer. J. Physiol. 203, 327–330 (1963).

    Google Scholar 

  • Caldwell, P. C.: The phosphorus metabolism of squid axons and its relationship to the active transport of sodium. J. Physiol. (Lond.) 152, 545–560 (1960).

    PubMed  Google Scholar 

  • Caldwell, P. C.: Energy relationships and the active transport of ions. Curr. Top. Bioenerget. 3, 251–278 (1969).

    Google Scholar 

  • Caldwell, P. C., Keynes, R. D.: The effect of ouabain on the efflux of sodium from a squid giant axon. J. Physiol. (Lond.) 148, 8–9P (1959).

    Google Scholar 

  • Caldwell, P. C., Hodgkin, A. L., Keynes, R. D., Shaw, T. I.: The effects of injecting energy-rich phosphate compounds on the active transport of ions in the giant axon of Loligo. J. Physiol. (Lond.) 152, 561–590 (1960).

    PubMed  Google Scholar 

  • Carafoli, E.: In vivo effect of uncoupling agents on the incorporation of calcium and strontium into mitochondria and other subcellular fractions of rat liver. J. gen. Physiol. 50, 1849–1864 (1967).

    Article  PubMed  Google Scholar 

  • Carafoli, E., Rossi, C. S.: Calcium transport in mitochondria. Adv. Cytopharmacol. 1, 209–227 (1971).

    PubMed  Google Scholar 

  • Cassidy, M. M., Goldner, A. M., Tidball, C. S.: Subcellular localization of calcium, magnesium and protein in canine intestinal mucosa. Amer. J. Physiol. 217, 680–685 (1969).

    PubMed  Google Scholar 

  • Casteels, R., Raeymaekers, L., Goffin, J., Wuytak, F.: A study of factors affecting the cellular calcium content of smooth muscle cells. Arch. int. Pharmacodyn. 201, 191–192 (1973).

    PubMed  Google Scholar 

  • Cittadini, A., Scarpa, A., Chance, B.: Calcium transport in intact Ehrlich ascites tumor cells. Biochim. biophys. Acta (Amst.) 291, 246–259 (1973).

    PubMed  Google Scholar 

  • Comar, C. L., Bronner, F. (Eds.): Mineral Metabolism, Volume III: Calcium Physiology. New York: Academic Press 1971.

    Google Scholar 

  • Cooke, W. J., Robinson, J. D.: Factors influencing calcium movements in rat brain slices. Amer. J. Physiol. 221, 218–225 (1971).

    PubMed  Google Scholar 

  • Cope, F. W.: Spin-echo nuclear magnetic resonance evidence for complexing of sodium ions in muscle, brain and kidney. Biophys. J. 10, 843–858 (1970).

    PubMed  Google Scholar 

  • Cosmos, E. E., Harris, E. J.: In vitro studies of the gain and exchange of calcium in frog skeletal muscle. J. gen. Physiol. 44, 1121–1130 (1961).

    Article  PubMed  Google Scholar 

  • Costantin, L. L.: Activation in striated muscle. In Kandel, E. (Ed.): Handbook of Physiology. Washington: American Physiological Society 1974, in press.

    Google Scholar 

  • Csaky, T. Z., Hara, Y.: Inhibition of active intestinal sugar transport by digitalis. Amer. J. Physiol. 209, 467–472 (1965).

    PubMed  Google Scholar 

  • Curtis, B. A.: Ca fluxes in single twitch muscle fibers. J. gen. Physiol. 50, 255–267 (1966).

    PubMed  Google Scholar 

  • Dean, P. M., Matthews, E. K.: Electrical activity in pancreatic islet cells. Nature (Lond.) 219, 389–390 (1968).

    PubMed  Google Scholar 

  • Devine, C. E., Somlyo, A. V., Somlyo, A. P.: Sarcoplasmic reticulum and excitation-contraction coupling in mammalian smooth muscles. J. Cell Biol. 52, 690–718 (1972).

    PubMed  Google Scholar 

  • de Weer, P. J.: Aspects of the recovery processes in nerve. Int. Rev. Physiol. Sec. on Neuro-physiology. In press 1974.

    Google Scholar 

  • Dicker, S. E.: Release of vasopressin and oxytocin from isolated pituitary glands of adult and new-born rats. J. Physiol. (Lond.) 185, 429–444 (1966).

    Google Scholar 

  • di Polo, R.: Calcium efflux from internally dialized squid giant axons. J. gen. Physiol. 62, 575–589 (1973a).

    Article  PubMed  Google Scholar 

  • di Polo, R.: Sodium-dependent calcium influx in dialyzed barnacle muscle fibers. Biochim. biophys. Acta (Amst.) 298, 279–283 (1973b).

    PubMed  Google Scholar 

  • Dittmer, D. S. (Ed.): Blood and other body fluids. Washington: Federation of American Societies for Experimental Biology 1961.

    Google Scholar 

  • Donnan, F. G.: The theory of membrane equilibria. Chem. Rev. 1, 73–90 (1925).

    Article  Google Scholar 

  • Douglas, W. W.: Stimulus-secretion coupling: the concept and clues from chromaffin and other cells. Brit. J. Pharmacol. 34, 451–474 (1968).

    Google Scholar 

  • Douglas, W. W., Kanno, T., Sampson, S. R.: Effects of acetylcholine and other medullary secretagogues and antagonists on the membrane potential of adrenal chromaffin cells: An analysis employing techniques of tissue culture. J. Physiol. (Lond.) 188, 107–120 (1967a).

    Google Scholar 

  • Douglas, W. W., Kanno, T., Sampson, S. R.: Influence of the ionic environment on the membrane potential of adrenal chromaffin cells and on the depolarizing effect of acetylcholine. J. Physiol. (Lond.) 191, 107–121 (1967 b).

    PubMed  Google Scholar 

  • Douglas, W. W., Rubin, R. P.: The role of calcium in the secretory response of the adrenal medulla to acetylcholine. J. Physiol. (Lond.) 159, 40–57 (1961).

    Google Scholar 

  • Douglas, W. W., Rubin, R. P.: The mechanism of catecholamine release from the adrenal medulla and the role of calcium in stimulus-secretion coupling. J. Physiol. (Lond.) 167, 288–310 (1963).

    Google Scholar 

  • Drahota, Z., Lehninger, A. L.: Movements of H+, K+ and Na+ during energy-dependent uptake and retention of Ca++ in rat liver mitochondria. Biochem. biophys. Res. Commun. 19, 351–356 (1965).

    Article  PubMed  Google Scholar 

  • Drahota, Z., Carafoli, E., Rossi, C. S., Gamble, R. L., Lehinger, A. L.: The steady-state maintenance of accumulated Ca++ in rat liver mitochondria. J. biol. Chem. 240, 2712–2720 (1965).

    PubMed  Google Scholar 

  • Dransfeld, H., Greef, K., Schorn, A., Ting, B. T.: Calcium uptake in mitochondria and vesicles of heart and skeletal muscle in presence of potassium, sodium, k-strophanthin and pentobarbital. Biochem. Pharmacol. 18, 1335–1345 (1969).

    Article  PubMed  Google Scholar 

  • Ebashi, S.: Calcium binding activity of vesicular relaxing factor. J. Biochem. (Tokyo) 50, 236–244 (1961).

    Google Scholar 

  • Ebashi, S., Endo, M.: Calcium ion and muscle contraction. Progr. Biophys. molec. Biol. 18, 123–183 (1968).

    Article  Google Scholar 

  • Ebashi, S., Endo, M., Ohtsuki, I.: Control of muscle contraction. Quart. Rev. Biophys. 2, 351–384 (1969).

    Google Scholar 

  • Edwards, C., Harris, E. J.: Factors influencing the sodium movement in frog muscle with a discussion of the mechanism of sodium movement. J. Physiol. (Lond.) 135, 567–580 (1957).

    PubMed  Google Scholar 

  • Fairhurst, A. S., Elison, C., Jenden, D. J.: Inhibition of calcium transport in muscle granules by oligomycin. Life Sci. 3, 953–958 (1964).

    Article  Google Scholar 

  • Filo, R. S., Bohr, D. F., Ruegg, J. C.: Glycerinated skeletal and smooth muscle: calcium and magnesium dependence. Science 147, 1581–1583 (1965).

    PubMed  Google Scholar 

  • Finkelstein, M., Bodansky, O.: The effect of cardiac glycosides on the respiration of cardiac muscle. J. Pharmacol. exp. Ther. 94, 274–287 (1948).

    Google Scholar 

  • Fitzpatrick, D. F., Landon, E. J., Debbas, G., Hurwitz, L.: A calcium pump in vascular smooth muscle. Science 176, 305–306 (1972).

    PubMed  Google Scholar 

  • Fleischer, N., Wood, J. McM.: Ouabain stimulation of 45Ca++ accumulation in the rat pituitary. Endocrinology 92, 1555–1559 (1973).

    PubMed  Google Scholar 

  • Fleischer, N., Zimmerman, G., Schindler, W., Hutchins, M.: Stimulation of adrenocorticotropin (ACTH) and growth hormone (GH) release by ouabain: Relationship to calcium. Endocrinology 91, 1436–1441.

    Google Scholar 

  • Frankenhaeuser, B., Hodgkin, A. L.: The action of calcium on the electrical properties of squid axons. J. Physiol. (Lond.) 137, 218–244 (1957).

    PubMed  Google Scholar 

  • Frick, A., Rumrich, G., Ullrich, K. J., Lassiter, W. E.: Microperfusion study of calcium transport in the proximal tubule of the rat kidney. Pfl ügers Arch. ges. Physiol. 286, 109–117 (1965).

    Article  Google Scholar 

  • Friedman, S. M., Wong, S. L., Walton, J. H.: Gass electrode measurements of blood sodium and potassium in man. J. appl. Physiol. 18, 950–954 (1963).

    PubMed  Google Scholar 

  • Frömter, E., Diamond, J. M.: Route of passive ion permeation in epithelia. Nature New Biology (Lond.) 235, 9–13 (1972).

    Article  PubMed  Google Scholar 

  • Fujisawa, H., Kajikawa, K., Ohi, Y., Hashimoto, Y., Yoshida, H.: Movement of radioactive calcium in brain slices and influences on it of protoveratrine, ouabain, potassium chloride and cocaine. J. Pharmacol. (Kyoto) 15, 327–334 (1965).

    Google Scholar 

  • Gage, P. W., Quastel, D. M. J.: Competition between sodium and calcium ions in transmitter release at mammalian nueromuscular junctions. J. Physiol. (Lond.) 185, 95–123 (1966).

    PubMed  Google Scholar 

  • Garcia, A. G., Kirpekar, S. M.: Release of noradrenaline from the cat spleen by sodium deprivation. Brit. J. Pharmacol. 47, 729–747 (1973).

    Google Scholar 

  • Gardos, C.: The role of calcium in the permeability of human erythrocytes. Acta physiol. Acad. Sci. hung. 15, 121–125 (1959).

    Google Scholar 

  • Garrahan, P. J., Glynn, I. M.: The sensitivity of the sodium pump to external sodium. J. Physiol. (Lond.) 192, 175–188 (1967a).

    PubMed  Google Scholar 

  • Garrahan, P. J., Glynn, I. M.: Factors affecting the relative magnitudes of the sodium: potassium and sodium: sodium exchanges catalysed by the sodium pump. J. Physiol. (Lond.) 192, 189–216 (1967b).

    PubMed  Google Scholar 

  • Garrison, J. C., Terepka, A. R.: The interrelationships between sodium ion, calcium transport and oxygen utilization in the isolated chick chorioallantoic membrane. J. Membr. Biol. 7, 146–163 (1972).

    Article  Google Scholar 

  • Gayton, D. C., Allen, R. D., Hinke, J. A. M.: The intracellular concentration and activity of sodium in giant barnacle muscle fibers. J. gen. Physiol. 54, 433–435 (1969).

    Article  PubMed  Google Scholar 

  • Geck, P., Heinz, E., Pfeiffer, B.: The degree and efficiency of coupling between the influxes of Na+ and α-aminoisobutyrate in Ehrlich cells. Biochim. biophys. Acta (Amst.) 288, 486–491 (1972).

    PubMed  Google Scholar 

  • Gibb, L. E., Eddy, A. A.: An electrogenic sodium pump as a possible factor leading to the concentration of amino acids by mouse ascites-tumour cells with reversed sodium ion concentration gradients. Biochem. J. 129, 979–981 (1972).

    PubMed  Google Scholar 

  • Gibbons, R. A., Sansom, B. F., Sellwood, R.: The passage of calcium and strontium across the gut of the anesthetized goat. J. Physiol. (Lond.) 222, 397–406 (1972).

    PubMed  Google Scholar 

  • Glitsch, H. G., Reuter, H., Scholz, H.: The effect of the internal sodium concentration on calcium fluxes in isolated guinea-pig auricles. J. Physiol. (Lond.) 209, 25–43 (1970).

    PubMed  Google Scholar 

  • Glynn, I. M.: The action of cardiac glycosides on ion movements. Pharmacol. Rev. 16, 381–407 (1964).

    PubMed  Google Scholar 

  • Goldring, J. M., Blaustein, M. P.: Synaptosome membrane potential changes monitored with a fluorescent probe. Society for Neuroscience sample Expanded Abstracts. Los Angeles: Brain Information service, p. 15 (1973).

    Google Scholar 

  • Goodford, P. J.: The calcium content of the smooth muscle of the guinea-pig taenia coli. J. Physiol. (Lond.) 192, 145–157 (1967).

    PubMed  Google Scholar 

  • Hagiwara, S., Nakajima, S.: Effects of the intracellular Ca ion concentration upon excitability of the muscle fiber membrane of a barnacle. J. gen. Physiol. 49, 807–818 (1966).

    Article  PubMed  Google Scholar 

  • Hales, C. N., Milner, R. D. G.: The role of sodium and potassium in insulin secretion from rabbit pancreas. J. Physiol. (Lond.) 194, 725–743 (1968a).

    PubMed  Google Scholar 

  • Hales, C. N., Milner, R. D. G.: Cations and the secretion of insulin from rabbit pancreas in vitro. J. Physiol. (Lond.) 199, 177–187 (1968 b).

    PubMed  Google Scholar 

  • Hanig, R. C., Tachiki, K. H., Aprison, M. H.: Subcellular distribution of potassium, sodium, magnesium, calcium and chloride in cerebral cortex. J. Neurochem. 19, 1501–1507.

    Google Scholar 

  • Hasselbach, W., Makinose, M.: Die Calciumpumpe der „Erschlaffungsgrana“ des Muskels und ihre Abhängigkeit von der ATP-Spaltung. Biochem. Z. 333, 518–528 (1961).

    PubMed  Google Scholar 

  • Hayes, F. R., Pelluet, D.: The inorganic constitution of molluscan blood and muscle. J. Marine Biol. Assoc. U.K. 26, 580–589 (1947).

    Google Scholar 

  • Hellam, D. C., Podolsky, R. J.: Force measurements in skinned muscle fibres. J. Physiol. (Lond.) 200, 807–819 (1969).

    PubMed  Google Scholar 

  • Higgins, C. B., Vatner, S. F., Braunwald, E.: Regional hemodynamic effects of a digitalis glycoside in the conscious dog with and without experimental heart failure. Circulat. Res. 30, 406–417 (1973).

    Google Scholar 

  • Hinke, J. A. M.: The measurement of sodium and potassium activities in the squid axon by means of cation-selective glass micro electrodes. J. Physiol. (Lond.) 156, 314–335 (1961).

    PubMed  Google Scholar 

  • Hinke, J. A. M., Wilson, M. L.: Effects of electrolytes on contractility of artery segments in vitro. Amer. J. Physiol. 203, 1161–1166 (1962).

    PubMed  Google Scholar 

  • Hodgkin, A. L., Keynes, R. D.: Active transport of cations in giant axons from Sepia and Loligo. J. Physiol. (Lond.) 128, 28–60 (1955).

    PubMed  Google Scholar 

  • Hodgkin, A. L., Keynes, R. D.: Movements of labelled calcium in squid axons. J. Physiol. (Lond.) 138, 253–281 (1957).

    PubMed  Google Scholar 

  • Höfer, M., Kleinzeller, A.: Calcium transport in slices of rabbit kidney cortex: The loss of calcium from Ca-enriched slices. Physiol. bohemoslov. 12, 425–434 (1963).

    PubMed  Google Scholar 

  • Jansen, J. K. S., Nicholls, J. G.: Conductance changes, an electrogenic pump and the hyper-polarization of leech neurons following impulses. J. Physiol. (Lond.) 229, 635–655 (1973).

    PubMed  Google Scholar 

  • Judah, J. D., Ahmed, K.: Role of phosphoproteins in ion transport: Interactions of sodium with calcium and potassium in liver slices. Biochim. biophys. Acta (Amst.) 71, 34–44 (1963).

    Article  Google Scholar 

  • Judah, J. D., Ahmed, K.: The biochemistry of sodium transport. Biol. Rev. 39, 160–193 (1964).

    PubMed  Google Scholar 

  • Judah, J. D., Willoughby, D. A.: Inhibitors of sodium dependent relaxation of guinea-pig ileum. J. cell. comp. Physiol. 64, 363–370 (1964).

    Article  Google Scholar 

  • Julian, F. J.: The effect of calcium on the force-velocity relation of briefly glycerinated frog muscle fibres. J. Physiol. (Lond.) 218, 117–145 (1971).

    PubMed  Google Scholar 

  • Kalix, P.: Uptake and release of calcium in rabbit vagus nerve. Pflügers Arch. ges. Physiol. 326, 1–14 (1971).

    Article  Google Scholar 

  • Katase, T., Tomita, T.: Influences of sodium and calcium on the recovery process from potassium contracture in the guinea-pig taenia coli. J. Physiol. (Lond.) 224, 489–500 (1972).

    PubMed  Google Scholar 

  • Katz, B.: The Release of Neural Transmitter Substances. Liverpool University Press 1969.

    Google Scholar 

  • Katz, B., Miledi, R.: A study of synaptic transmission in the absence of nerve impulses. J. Phy siol. (Lond.) 192, 407–436 (1967).

    Google Scholar 

  • Katz, B., Miledi, R.: Tetrodotoxin-resistant electric activity in presynaptic terminals. J. Physiol. (Lond.) 203, 459–487 (1969).

    PubMed  Google Scholar 

  • Katz, B., Miledi, R.: Further study of the role of calcium in synaptic transmission. J. Physiol. (Lond.) 207, 789–801 (1970).

    PubMed  Google Scholar 

  • Kelly, J. S.: Antagonism between Na+ and Ca+ at the neuromuscular junction. Nature (Lond.) 205, 296–297.

    Google Scholar 

  • Keynes, R. D., Lewis, P. R.: The intracellular calcium contents of some invertebrate nerves. J. Physiol. (Lond.) 134, 399–407 (1956).

    PubMed  Google Scholar 

  • Keynes, R. D., Ritchie, J. M.: The movements of labelled ions in mammalian non-myelinated nerve fibres. J. Physiol. (Lond.) 179, 333–367 (1965).

    PubMed  Google Scholar 

  • Kirpekar, S. M., Wakade, A. R.: Release of noradrenaline from the cat spleen by potassium. J. Physiol. (Lond.) 194, 595–608 (1968).

    PubMed  Google Scholar 

  • Koechlin, B. A.: On the chemical composition of the axoplasm of squid giant nerve fibers with particular reference to its ion pattern. J. biophys. biochem. Cytol. 1, 511–529 (1955).

    PubMed  Google Scholar 

  • Kregenow, F. M., Hoffman, J. F.: Some kinetic and metabolic characteristics of calcium-induced potassium transport in human red cells. J. gen. Physiol. 60, 406–429 (1972).

    Article  PubMed  Google Scholar 

  • Krnjevic, K., Lisiewicz, A.: Injection of calcium ions into spinal motoneurones. J. Physiol. (Lond.) 225, 363–390 (1972).

    PubMed  Google Scholar 

  • Kupfer, S., Kosovsky, J. D.: Effects of cardiac glycosides on renal tubular transport of calcium, magnesium, inorganic phosphate and glucose in the dog. J. clin. Invest. 44, 1132–1143 (1965).

    PubMed  Google Scholar 

  • Kuriyama, H.: Effects of ions and drugs on the electrical activity of smooth muscle. In: Bulb-ring, E., A. F. Brading, A. W.Jones, T. Tomita (Eds.): Smooth Muscle, p. 366–395. Baltimore: Williams and Wilkins 1970.

    Google Scholar 

  • Lambert, A. E., Jeanrenaud, B., Junod, A., Renold, A. E.: Organ culture of fetal rat pancreas. II. Insulin release induced by amino and organic acids, by hormonal peptides, by cationic alterations in the medium and by other agents. Biochim. biophys. Acta (Amst.) 174, 540–553 (1969).

    Google Scholar 

  • Lassiter, W. E., Gottschalk, C. W., Mylle, M.: Micropuncture study of renal tubular re-absorption of calcium in normal rodents. Amer. J. Physiol. 204, 771–775 (1963).

    Google Scholar 

  • Lauterbach, F.: Beziehungen zwischen enteraler Resorption aktiv transportierter sowie diffundierender Substanzen und Konzentration sowie Transport von Na+-Ionen. Biochim. biophys. Acta (Amst.) 135, 256–272 (1967a).

    PubMed  Google Scholar 

  • Lauterbach, F.: Die Wirkung cardiotoner Steroide auf die enterale Resorption aktiv transportierter und diffundierender Substanzen und auf deren Beziehung zu Na+-Konzentration und Na+-Transport. Biochim. biophys. Acta (Amst.) 135, 273–285 (1967b).

    PubMed  Google Scholar 

  • Lee, K. S., Klaus, W.: The subcellular basis for the mechanism of inotropic action of cardiac glycosides. Pharmacol. Rev. 23, 193–261 (1971).

    PubMed  Google Scholar 

  • Lehninger, A. L.: Mitochondria and calcium ion transport. Biochem. J. 119, 129–138 (1970).

    PubMed  Google Scholar 

  • Lehninger, A. L., Carafoli, E., Rossi, C. S.: Energy-linked ion movements in mitochondrial systems. Adv. Enzymol. 29, 259–320 (1967).

    PubMed  Google Scholar 

  • Leonard, E.: Alteration of contractile response of artery strips by a potassium-free solution, cardiac glycosides and changes in stimulus frequency. Amer. J. Physiol. (Lond.) 189, 185–190 (1957).

    PubMed  Google Scholar 

  • Lewis, G. N., Randall, M.: The activity coefficient of strong electrolytes. J. Amer. chem. Soc. 43, 1112–1154 (1921).

    Article  Google Scholar 

  • Lisman, J. E., Brown, J. E.: The effects of intracellular iontophoretic injection of calcium and sodium ions on the light response of Limulus ventral photoreceptors. J. gen. Physiol. 59, 701–719 (1972).

    Article  PubMed  Google Scholar 

  • Llinás, R., Blinks, J. R., Nicholson, C.: Calcium transient in presynaptic terminal of squid giant synapse: Detection with aequorin. Science 176, 1127–1129 (1972).

    PubMed  Google Scholar 

  • Loewenstein, W.: Membrane junctions in growth and differentiation. Fed. Proc. 32, 60–64 (1973).

    PubMed  Google Scholar 

  • Loewenstein, W., Nakas, M., Socolar, S. J.: Junctional membrane uncoupling. Permeability transformation at a cell membrane junction. J. gen. Physiol. 50, 1865–1891 (1967).

    Article  PubMed  Google Scholar 

  • Lüttgau, H. C., Niedergerke, R.: The antagonism between Ca and Na ions on the frog's heart. J. Physiol. (Lond.) 143, 486–505 (1958).

    PubMed  Google Scholar 

  • Luxoro, M., Yanez, E.: Permeability of the giant axon of Dosidicus gigas to calcium ions. J. gen. Physiol. 51, 115s–122s (1968).

    PubMed  Google Scholar 

  • Martin, D. L., de Luca, H. F.: Influence of sodium on calcium transport by the rat small intestine. Amer. J. Physiol. 216, 1351–1359 (1969).

    PubMed  Google Scholar 

  • Martonosi, A., Feretos, R.: Observations on the Ca uptake by fragmented sarcoplasmic reticulum. Fed. Proc. 22, 352 (1963).

    Google Scholar 

  • Martonosi, A., Feretos, R.: Sarcoplasmic reticulum. I. The uptake of Ca++ by sarcoplasmic reticulum fragments. J. biol. Chem. 239, 648–658 (1964).

    PubMed  Google Scholar 

  • Mason, D. T., Braunwald, E.: Studies on digitalis. X. Effects of ouabain on forearm vascular resistance and venous tone in normal subjects and in patients in heart failure. J. clin. Invest. 43, 532–543 (1964).

    PubMed  Google Scholar 

  • McLaughlin, S. G. A., Hinke, J. A. M.: Sodium and water binding in single striated muscle fibers of the giant barnacle. Canad. J. Physiol. Pharmacol. 44, 837–848 (1966).

    Google Scholar 

  • McLean, F. C., Hastings, A. B.: Clinical estimation and significance of calcium-ion concentrations in the blood. Amer. J. med. Sci. 189, 601–613 (1935).

    Google Scholar 

  • Meech, R.: Intracellular calcium injection causes increased potassium conductance in Aplysia neurones. Comp. Biochem. Physiol. 42A, 493–499 (1972).

    Article  Google Scholar 

  • Morel, F., Roinel, N., le Grimellec, C.: Electron probe analysis of tubular fluid composition. Nephron 6, 350–364 (1969).

    PubMed  Google Scholar 

  • Muchnik, S., Venosa, R. A.: Role of sodium ions in response of the frequency of miniature end-plate potentials to osmotic changes in the neuromuscular junction. Nature (Lond.) 222, 169–171 (1969).

    PubMed  Google Scholar 

  • Müller, P.: Ouabain effects on cardiac contraction, action potential and cellular potassium. Circulat. Res. 17, 46–56 (1965).

    PubMed  Google Scholar 

  • Mullins, L. J., Brinley, F. J., Jr.: Some factors influencing sodium extrusion by internally dialyzed squid axons. J. gen. Physiol. 50, 2333–2355 (1967).

    Article  PubMed  Google Scholar 

  • Mullins, L. J., Brinley, F. J., Jr.: Potassium fluxes in dialyzed squid axons. J. gen. Physiol. 53, 704–740 (1969).

    Article  PubMed  Google Scholar 

  • Nichols, G., Jr., Wasserman, R. H. (Eds.): Cellular Mechanisms for Calcium Transfer and Homeostasis. New York: Academic Press 1971.

    Google Scholar 

  • Niedergerke, R.: Calcium and the activation of concentration. Experientia (Basel) 15, 128–130 (1959).

    Article  Google Scholar 

  • Niedergerke, R.: Movements of Ca in frog heart ventricles at rest and during contractures. J. Physiol. (Lond.) 167, 515–550 (1963).

    Google Scholar 

  • Niedergerke, R., Harris, E. J.: Accumulation of calcium (or strontium) under conditions of increasing contractility. Nature (Lond.) 179, 1068–1069 (1957).

    PubMed  Google Scholar 

  • Niedergerke, R., Lüttgau, H. C.: Calcium and the contraction of the heart. Nature (Lond.) 179, 1066–1067 (1957).

    PubMed  Google Scholar 

  • Neuman, W. F., Neuman, M. W.: The chemical dynamics of bone mineral, p. 1–22. Chicago: The University of Chicago Press 1958.

    Google Scholar 

  • Ogawa, Y.: The apparent binding constant of glycoletherdiaminetetraacetic acid for calcium at neutral pH. J. Biochem. (Tokyo) 64, 255–257 (1966).

    Google Scholar 

  • Ohta, M., Narsahashi, T., Keeler, R. F.: Effects of veratrum alkaloids on membrane potential and conductance of squid crayfish and giant axons. J. Pharmacol. exp. Ther. 184, 143–154 (1973).

    PubMed  Google Scholar 

  • Oliveira-Castro, G. M., Loewenstein, W. R.: Junctional membrane permeability. Effects of divalent cations. J. Membr. Biol. 5, 51–77 (1971).

    Article  Google Scholar 

  • Orentlicher, M., Ornstein, R. S.: Influence of eternal cations on caffeine-induced tension: Calcium extrusion in crayfish muscle. J. Membr. Biol. 5, 319–333 (1971).

    Article  Google Scholar 

  • Osa, T.: Effect of removing the external sodium on the electrical and mechanical activities of the pregnant mouse myometrium. Jap. J. Physiol. 21, 607–625 (1971).

    PubMed  Google Scholar 

  • Paupe, J.: Comparison entre fractions calciques de liquides cephalo-rachidiens et de serums normaux chez l'Homme. C.R. Soc. Biol. (Paris) 151, 318–320 (1957).

    Google Scholar 

  • Portzehl, H., Caldwell, P. C., Rüegg, J. C.: The dependence of contraction and relaxation of muscle fibres from the crab, Maia squinado, on the internal concentrations of free calcium ions. Biochim. biophys. Acta (Amst.) 79, 581–591 (1964).

    PubMed  Google Scholar 

  • Potashner, S. J., Johnstone, R. M.: Cation gradients, ATP and amino acid accumulation in Ehrlich ascites cells. Biochim. biophys. Acta (Amst.) 233, 91–103 (1971).

    PubMed  Google Scholar 

  • Pressman, B. C.: Ionophorous antibiotics as models for biological transport. Fed. Proc. 27, 1283–1288 (1968).

    PubMed  Google Scholar 

  • Reiter, M.: Cardioactive steroids with special reference to calcium. In: Cuthbert, A. W. (Ed.): Calcium and Cell Function, p. 270–279. London: Macmillan 1970.

    Google Scholar 

  • Reuter, H.: Divalent ions as charge carriers in excitable membranes. Progr. Biophys. molec. Biol. 26, 1–43 (1973).

    Article  Google Scholar 

  • Reuter, H., Blaustein, M. P., Haeusler, G.: Na-Ca exchange and tension developement in arterial smooth muscle. Phil. Trans. B 265, 87–94 (1973).

    Google Scholar 

  • Reuter, H., Seitz, N.: The dependence of calcium efflux from cardiac muscle on temperature and external ion composition. J. Physiol. (Lond.) 195, 451–470 (1968).

    PubMed  Google Scholar 

  • Ringer, S.: A further contribution regarding the influence of the different constituents of the blood on the contraction of the heart. J. Physiol. (Lond.) 4, 29–42 (1883).

    Google Scholar 

  • Robinson, R. A., Stokes, R. H.: Electrolyte Solutions. Second edition, revised. London: Butterworths 1968.

    Google Scholar 

  • Rodriguez de Lores Arnaiz, G., de Robertis, E.: Properties of the isolated nerve endings. Curr. Topics Membr. Transp. 3, 237–272 (1972).

    Google Scholar 

  • Rojas, E., Hidalgo, C.: Effect of temperature and metabolic inhibitors on 45Ca outflow from squid giant axons. Biochim. biophys. Acta (Amst.) 163, 550–556 (1968).

    PubMed  Google Scholar 

  • Romero, P. J., Whittam, R.: The control by internal calcium of membrane permeability to sodium and potassium. J. Physiol. (Lond.) 214, 481–507 (1971).

    PubMed  Google Scholar 

  • Rose, R. C., Schultz, S. G.: Studies on the electrical potential profile across rabbit ileum. Effects of sugars and amino acids on transmural and transmucosal P.D.s. J. gen. Physiol. 57, 639–663 (1971).

    Article  PubMed  Google Scholar 

  • Rosenberg, T., Wilbrandt, W.: Uphill transport induced by counter-flow. J. gen. Physiol. 41, 289–296 (1957).

    Article  PubMed  Google Scholar 

  • Rossi, C. S., Lehninger, A. L.: Stoichiometry of respiratory stimulation, accumulation of Ca++ and phosphate, and oxidative phosphorylation in rat liver mitochondria. J. biol. Chem. 239, 3971–3980 (1964).

    PubMed  Google Scholar 

  • Rubin, R. P.: The metabolic requirements for catecholamine release from the adrenal medulla. J. Physiol. (Lond.) 202, 197–209 (1969).

    PubMed  Google Scholar 

  • Rubin, R. P.: The role of calcium in the release of neurotransmitter substances and hormones. Pharmacol. Rev. 22, 389–428 (1970).

    PubMed  Google Scholar 

  • Russell, J. M., Blaustein, M. P.: Calcium efflux from barnacle muscle fibers: dependence on external cations. J. gen. Physiol. 63, 144–167 (1974).

    Article  PubMed  Google Scholar 

  • Schachter, D.: Toward a molecular description of active transport. In: Dowben, R. M. (Ed.): Biological Membranes, p. 157–176. Boston: Little, Brown 1969.

    Google Scholar 

  • Schachter, D., Kowarski, S., Reid, P.: Active transport of calcium by intestine: studies with a calcium activity electrode. In: Cuthbert, A. W. (Ed.): Calcium and Cellular Function, p. 108–123. London: Macmillan 1970.

    Google Scholar 

  • Schaechtelin, G.: Der Einfluß von Calcium und Natrium auf die Kontraktur des M. rectus abdominis. Pflügers Arch. ges. Physiol. 273, 164–181 (1961).

    Article  Google Scholar 

  • Schafer, J. A., Heinz, E.: The effect of reversal of Na+ and K+ electrochemical potential gradients on the active transport of amino acids in Ehrlich ascites tumor cells. Biochim. biophys. Acta (Amst.) 249, 15–33 (1971).

    PubMed  Google Scholar 

  • Schatzmann, H. J.: Herzglykoside als Hemmstoffe für den aktiven Kalium-und Natrium-transport durch die Erythrocytenmembran. Helv. physiol. pharmacol. Acta 11, 346–354 (1953).

    PubMed  Google Scholar 

  • Schatzmann, H. J., Vincenzi, F. F.: Calcium movements across the membrane of human red cells. J. Physiol. (Lond.) 201, 369–395 (1969).

    PubMed  Google Scholar 

  • Schoffeniels, E.: Distribution du calcium et du magnesium entre la cellule et son milieu. In: Handbuch der exp. Pharmakol., 17. Bd., l.Teil, S. 114–130. Berlin-Göttingen-Heidelberg: Springer 1963.

    Google Scholar 

  • Schoffeniels, E.: Ionic composition of the arterial wall. Angiology 6, 65–88 (1969).

    Google Scholar 

  • Schultz, S. G., Curran, P. F.: Coupled transport of sodium and organic solutes. Physiol. Rev. 50, 637–718 (1970).

    PubMed  Google Scholar 

  • Schwartzenbach, G., Senn, H., Anderegg, G.: Komplexone XXIX. Ein großer Chelateffekt besonderer Art. Helv. chim. Acta 40, 1886–1900 (1957).

    Article  Google Scholar 

  • Shanes, A. M.: Electrochemical aspects of physiological and pharmacological action in excitable cells: Part I, The resting cell and its alterations by extrinsic factors. Pharmacol. Rev. 10, 59–164 (1958a).

    PubMed  Google Scholar 

  • Shanes, A. M.: Electrochemical aspects of physiological and pharmacological action in excitable cells: Part II, The action potential and excitation. Pharmacol. Rev. 10, 165–273 (1958b).

    PubMed  Google Scholar 

  • Shatkay, A.: Individual activity of calcium ions in pure solutions of CaCl2 and in mixtures. Biophys. J. 8, 912–919 (1968).

    PubMed  Google Scholar 

  • Shporer, M., Civan, M. M.: Nuclear magnetic resonance of sodium-23 linoleate-water. Basis for an alternative interpretation of sodium-23 spectra within cells. Biophys. J. 12, 114–122 (1972).

    PubMed  Google Scholar 

  • Sillen, L. G.: Stability Constants of Metal-Ion Complexes. Section I: Inorganic Ligands, p. 235–236. London: The Chemical Society 1964.

    Google Scholar 

  • Sitrin, M. D., Bohr, D. F.: Ca and Na interactions in vascular smooth muscle contraction. Amer. J. Physiol. 220, 1124–1128 (1971).

    PubMed  Google Scholar 

  • Smith, M. W.: The in vitro absorption of water and solutes from the intestine of goldfish, Carassius auratus. J. Physiol. (Lond.) 175, 38–49 (1964).

    PubMed  Google Scholar 

  • Somlyo, A. P., Somlyo, A. V.: Vascular smooth muscle I. Normal structure, pathology, biochemistry and biophysics. Pharmacol. Rev. 20, 197–272 (1968).

    PubMed  Google Scholar 

  • Stahl, W. L., Swanson, P. D.: Uptake of calcium by subcellular fractions isolated from ouabain-treated cerebral tissues. J. Neurochem. 16, 1553–1563 (1969).

    PubMed  Google Scholar 

  • Stahl, W. L., Swanson, P. D.: Calcium movements in brain slices in low sodium or calciummedia. J. Neurochem. 19, 2395–2407 (1972).

    PubMed  Google Scholar 

  • Terepka, A. R., Stewart, M. E., Merkel, N.: Transport functions of the chick corio-allantoic membrane. II. Active calcium transport, in vitro. Exp. Cell Res. 58, 107–117 (1969).

    Article  PubMed  Google Scholar 

  • Tomita, T., Watanabe, H.: Factors controlling myogenic activity in smooth muscle. Phil. Trans. B 265, 73–85 (1973).

    Google Scholar 

  • Tower, D. B.: Ouabain and the distribution of calcium and magnesium in cerebral tissues in vitro. Exp. Brain Res. 6, 273–283 (1968).

    Article  PubMed  Google Scholar 

  • Triner, L., KiLLian, P., Nahas, G. G.: Ouabain hypoglycemia: Insulin mediation. Science 162, 560–561 (1968).

    PubMed  Google Scholar 

  • van Breemen, C., Farinas, B. R., Gerba, P., McNaughton, E. D.: Excitation-contraction coupling in rabbit aorta studied by the lanthanum method for measuring cellular calcium influx. Circulat. Res. 30, 44–54 (1973).

    Google Scholar 

  • van Breemen, C., McNaughton, E. D.: The separation of cell membrane calcium transport from extracellular calcium exchange in vascular smooth muscle. Biochem. biophys. Res. Commun. 39, 567–574 (1970).

    Article  PubMed  Google Scholar 

  • van Rossum, G. D. V.: Net movements of calcium and magnesium in slices of rat liver. J. gen. Physiol. 55, 18–32 (1970).

    Article  PubMed  Google Scholar 

  • Vassort, G.: Influence of sodium ions on the regulation of frog myocardial contractility. Pflügers Arch. ges. Physiol. 339, 225–240 (1973).

    Article  Google Scholar 

  • Vogel, D., Brinley, F. J., Jr.: Mg and Ca fluxes in isolated dialyzed barnacle muscle fibers. Biophys. Soc. Abstr. Seventeenth Ann. Meeting, p. 104a (1973).

    Google Scholar 

  • Vogel, G., Stoeckert, I.: Die Bedeutung des Natriums für den renal-tubulären Calcium-Transport bei Rana ridibunda. Pflügers Arch. ges. Physiol. 298, 23–30 (1967).

    Article  Google Scholar 

  • Vogel, G., Tervooren, U.: Die Bedeutung von Kalium für die renal-tubulären Transporte von Natrium und Calcium und für die Wirkung kardiotoner Steroide. Pflügers Arch. ges. Physiol. 284, 103–107 (1965).

    Article  Google Scholar 

  • Walser, M.: Ion Association. VI. Interactions between calcium, magnesium, inorganic phosphate, citrate and protein in normal human plasma. J. clin. Invest. 40, 723–730 (1961).

    PubMed  Google Scholar 

  • Walser, M.: Calcium clearance as a function of sodium clearance in the dog. Amer. J. Physiol. 200, 1099–1104 (1961).

    PubMed  Google Scholar 

  • Walser, M.: Calcium-sodium interdependence in renal transport. In: Fisher, J. W. (Ed.): Renal Pharmacology, p. 21–41. New York: Appleton-Century-Crofts 1971.

    Google Scholar 

  • Wasserman, R. H. (Ed.): The Transfer of Calcium and Strontium Across Biological Membranes. New York: Academic Press 1963.

    Google Scholar 

  • Wasserman, R. H. (Ed.): Calcium Transport by the intestine: A model and comment on vitamin D action. Calcif. Tiss. Res. 2, 301–313 (1968).

    Google Scholar 

  • Weber, A.: Energized calcium transport and relaxing factor. Curr. Top. Bioenerget. 1, 203–254 (1966).

    Google Scholar 

  • Weber, A.: The mechanism of the action of caffeine on sarcoplasmic reticulum. J. gen. Physiol. 52, 760–772 (1968).

    Article  PubMed  Google Scholar 

  • Weber, A., Herz, R.: The relationship between caffeine contracture of intact muscle and the effect of caffeine on reticulum. J. gen. Physiol. 52, 750–759 (1968).

    Article  PubMed  Google Scholar 

  • Wilbrandt, W., Koller, H.: Die Calciumwirkung am Froschherzen als Funktion des Ionen-gleichgewichts zwischen Zellmembran und Umgebung. Helv. physiol. pharmacol. Acta 6, 208–221 (1948).

    Google Scholar 

  • Wilbrandt, W., Rosenberg, T.: The concept of carrier transport and its corollaries in pharmacology. Pharmacol. Rev. 13, 109–183 (1961).

    PubMed  Google Scholar 

  • Winegrad, S.: Studies of cardiac muscle with a high permeability to calcium produced by treatment with ethylenediaminetatraacetic acid. J. gen. Physiol. 58, 71–93 (1971).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Springer Verlag

About this chapter

Cite this chapter

Blaustein, M.P. (1974). The interrelationship between sodium and calcium fluxes across cell membranes. In: Reviews of Physiology, Biochemistry and Pharmacology, Volume 70. Reviews of Physiology, Biochemistry and Pharmacology, vol 70. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0034293

Download citation

  • DOI: https://doi.org/10.1007/BFb0034293

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-06716-0

  • Online ISBN: 978-3-540-38010-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics