Skip to main content

Acetylcholine-receptor-mediated ion fluxes in Electrophorus electricus and Torpedo California membrane vesicles

  • Chapter
  • First Online:

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 102))

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams PR (1981) Acetylcholine receptor kinetics. J Membr Biol 58:161–174

    Google Scholar 

  • Anderson CR, Stevens CF (1973) Voltage clamp analysis of acetylcholine-produced end-plate current fluctuations at frog neuromuscular junction. J Physiol (Lond) 235:655–691

    Google Scholar 

  • Aoshima H, Cash DJ, Hess GP (1980) Acetylcholine-receptor-controlled ion flux in electroplax membrane vesicles. A minimal mechanism based on rate measurements in the millisecond to minute time region. Biochem Biophys Res Commun 92:896–904

    Google Scholar 

  • Aoshima H, Cash DJ, Hess GP (1981) The mechanism of the inactivation (desensitization) of the acetylcholine receptor. Investigations by fast reaction techniques with membrane vesicles. Biochemistry 20:3467–3474

    Google Scholar 

  • Bangham AD, Standish MM, Watkins JC (1965) Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 13:238–252

    Google Scholar 

  • Bernhardt J, Neumann E (1978) Kinetic analysis of receptor-controlled tracer efflux from sealed membrane fragments. Proc Natl Acad Sci USA 75:3756–3760

    Google Scholar 

  • Bernhardt J, Neumann E (1980) Physical factors determining gated flux from or into sealed membrane fragments. Neurochemistry Int 2:243–250

    Google Scholar 

  • Bevington PR (1969) Data reduction and error analysis. Academic, New York

    Google Scholar 

  • Bulger JE, Fu J-JL, Hindy EF, Silberstein RL, Hess GP (1977) Allosteric interactions between the membrane-bound acetylcholine receptor and chemical mediators. Kinetic studies. Biochemistry 16:684–692

    Google Scholar 

  • Cash DJ, Hess GP (1980) Molecular mechanism of acetylcholine-receptor-controlled ion translocation across cell membranes. Proc Natl Acad Sci USA 77:842–846

    Google Scholar 

  • Cash DJ, Hess GP (1981) Quenched flow technique with plasma membrane vesicles: acetylcholine-receptor-mediated transmembrane ion flux. Anal Biochem 112:39–51

    Google Scholar 

  • Cash DJ, Aoshima H, Hess GP (1980) Acetylcholine-induced cation translocation across cell membranes and inactivation of the acetylcholine receptor: chemical kinetic measurements in the msec time region. Proc Natl Acad Sci USA 78:3318–3322

    Google Scholar 

  • Cash DJ, Aoshima H, Hess GP (1981) Acetylcholine-induced receptor-controlled ion flux investigated by flow quench techniques. Biochem Biophys Res Commun 95:1010–1016

    Google Scholar 

  • Chance B, Eisenhardt RH, Gibson QH, Lonberg-Holm KK (eds) (1964) Rapid mixing and sampling techniques in biochemistry. Academic, New York

    Google Scholar 

  • Changeux J-P (1981) The acetylcholine receptor: an “allosteric” membrane protein. Harvey Lect 75:85–254

    Google Scholar 

  • Delgeane A, McNamee MB (1980) Independent activation of the acetylcholine receptor from Torpedo californica at two sites. Biochemistry 19:890–895

    Google Scholar 

  • Epstein N, Racker E (1978) Reconstitution of carbamylcholine-dependent sodium ion flux and desensitization of the acetylcholine receptor from Torpedo californica. J Biol Chem 253:6660–6662

    Google Scholar 

  • Epstein N, Hess GP, Kim PS, Noble RL (1980) Inactivation (desensitization) of the acetylcholine receptor in Electrophorus electricus membrane vesicles by carbamoylcholine: comparison between ion flux and α-bungarotoxin binding. J Membr Biol 56:133–137

    Google Scholar 

  • Fersht AR, Jakes R (1975) Demonstration of two reaction pathways for the aminoacylation of tRNA. Application of the pulsed quench flow technique. Biochemistry 14:3350–3362

    Google Scholar 

  • Froehlich JP, Taylor EW (1976) Transient kinetic effects of calcium ion on sarcoplasmic reticulum adenosine triphosphatase. J Biol Chem 251:2307–2315

    Google Scholar 

  • Fu J-JL, Donner DB, Hess GP (1974) Half of the sites reactivity of the membrane-bound Electrophorus electricus acetylcholine receptor. Biochem Biophys Res Comm 60:1072–1080

    Google Scholar 

  • Fu J-JL, Donner DB, Moore DE, Hess GP (1977) Allosteric interactions between the membrane-bound acetylcholine receptor and chemical mediators: equilibrium measurements. Biochemistry 16:678–684

    Google Scholar 

  • Goldin SM, Rhodin V, Hess EJ (1980) Molecular characterization, reconstitution and “transport-specific fractionation” of the saxitoxin-binding protein/Na+ gate of mammalian brain. Proc Natl Acad Sci USA 77:6884–6888

    Google Scholar 

  • Grünhagen HH, Changeux J-P (1976) Studies on the electrogenic action of acetylcholine with Torpedo marmorata electric organ. J Mol Biol 106:517–535

    Google Scholar 

  • Grünhagen HH, Iwatsubo M, Changeux J-P (1977) Fast kinetic studies on the interaction of cholinergic agonists with the membrane-bound acetylcholine receptor from Torpedo marmorata as revealed by quinacrine fluorescence. Eur J Biochem 80:225–242

    Google Scholar 

  • Hammes GG (1978) Principles of chemical kinetics. Academic, New York

    Google Scholar 

  • Hammes GG, Wu CW (1974) Kinetics of allosteric enzymes. Annu Rev Biophys Bioeng 3:1–33

    Google Scholar 

  • Hazelbauer GH, Changeux J-P (1974) Reconstitution of a chemically excitable membrane. Proc Natl Acad Sci USA 71:1479–1483

    Google Scholar 

  • Heidmann T, Changeux J-P (1978) Structural and functional properties of the acetylcholine receptor protein in its purified and membrane-bound states. Annu Rev Biochem 47:317–357

    Google Scholar 

  • Heidmann T, Changeux J-P (1980) Interaction of a fluorescent agonist with the membrane-bound acetylcholine receptor from Torpedo marmorata in the millisecond time range: resolution and evidence for positive cooperative effects. Biochem Biophys Res Comm 97:889–896

    Google Scholar 

  • Hess GP (1979) Acetylcholine-receptor-controlled ion fluxes in microsacs (membrane vesicles) obtained from the electroplax of Electrophorus electricus. In: Smith FO, Worden FG (eds) The neurosciences, fourth study program. MIT Press, Cambridge, pp 831–839

    Google Scholar 

  • Hess GP, Andrews JP (1977) Functional acetylcholine receptor electroplax membrane microsacs (vesicles): purification and characterization. Proc Natl Acad Sci USA 74:482–486

    Google Scholar 

  • Hess GP, Andrews JP, Struve GE, Coombs SE (1975a) Acetylcholine-receptor-mediated ion flux in electroplax membrane preparations. Proc Natl Acad Sci USA 72:4371–4375

    Google Scholar 

  • Hess GP, Bulger JE, Fu J-JL, Hindy EF, Silberstein RJ (1975b) Allosteric interactions of the membrane-bound acetylcholine receptor: kinetic studies with α-bungarotoxin. Biochem Biophys Res Comm 64:1018–1026

    Google Scholar 

  • Hess GP, Andrews JP, Struve GE (1976) Apparent cooperative effects in acetylcholine-receptor-mediated ion flux in electroplax membrane preparations. Biochem Biophys Res Commun 69:830–837

    Google Scholar 

  • Hess GP, Lipkowitz S, Struve GE (1978) Acetylcholine-receptor-mediated ion flux in electroplax membrane microsacs (vesicles): change in mechanism produced by asymmetrical distribution of sodium and potassium ions. Proc Natl Acad Sci USA 75:1703–1707

    Google Scholar 

  • Hess GP, Cash DJ, Aoshima H (1979) Acetylcholine-receptor-controlled ion fluxes in membrane vesicles investigated by fast reaction techniques. Nature 282:329–331

    Google Scholar 

  • Hess GP, Cash DJ, Aoshima H (1980) Kinetic mechanism of acetylcholine-receptor-controlled ion flux: flow quench kinetic measurements of acetylcholine-induced flux in membrane vesicles. Neurochemistry Int 2:233–242. Also in: Schoffeniels E, Neuman E (eds) (1981) Molecular aspects of bioelectricity. Pergamon, Oxford, p 233

    Google Scholar 

  • Hess GP, Aoshima H, Cash DJ, Lenchitz B (1981) The specific reaction rate of acetylcholine-receptor-controlled ion translocation: a comparison of measurements with membrane vesicles and with muscle cells. Proc Natl Acad Sci USA 78:1361–1365

    Google Scholar 

  • Hess GP, Pasquale EB, Karpen JW, Sachs AB, Takeyasu K, Cash DJ (1982a) Acetylcholine receptor-controlled ion translocation. A comparison of the effects of suberyldicholine, carbamoylcholine, and acetylcholine. Biochem Biophys Res Commun 107:1583–1588

    Google Scholar 

  • Hess GP, Pasquale EB, Walker JW, McNamee MG (1982b) Comparison of acetylcholine-receptor-controlled cation flux in membrane vesicles from Torpedo californica and Electrophorus electricus: chemical kinetic measurements in the milli-second region. Proc Natl Acad Sci USA 79:963–967

    Google Scholar 

  • Hess GP, Cash DJ, Aoshima H (1983) Acetylcholine-receptor-controlled ion translocation. Chemical kinetic investigations of the mechanism. Annu Rev Biophys Bioeng 12:443–473

    Google Scholar 

  • Hess GP, Kolb H-A, Läuger P, Schoffeniels E, Schwarze W (1984) Acetylcholine receptor (from E. electricus): a comparison of single-channel current recordings and chemical kinetic measurements. Proc Natl Acad Sci USA (in press)

    Google Scholar 

  • Huganir RL, Schell MA, Racker E (1979) Reconstitution of the purified acetylcholine receptor from Torpedo californica. FEBS Lett 108:155–160

    Google Scholar 

  • Jürss R, Prinz H, Maelicke A (1979) NBD-5-acetylcholine: fluorescent analog of acetylcholine and agonist at the neuromuscular junction. Proc Natl Acad Sci USA 76:1064–1068

    Google Scholar 

  • Kaback HR (1970) Transport. Annu Rev Biochem 39:561–598

    Google Scholar 

  • Kandel ER (1981) Calcium and the control of synaptic strength by learning. Nature 293:697–700

    Google Scholar 

  • Karlin A (1980) Molecular properties of nicotinic acetylcholine receptors. In: Cotman CW, Pate G, Nicolsen GL (eds) The cell surface and neuronal function. Elsevier/North Holland, Amsterdam, pp 191–260

    Google Scholar 

  • Kasai M, Changeux J-P (1971a) In vitro excitation of purified membrane fragments by cholinergic agonists. I. Pharmacological properties of the excitable membrane fragments. J Membr Biol 6:1–23

    Google Scholar 

  • Kasai M, Changeux J-P (1971b) In vitro excitation of purified membrane fragments by cholinergic agonists. II. The permeability change caused by cholinergic agonists. J Membr Biol 6:24–57

    Google Scholar 

  • Kasai M, Changeux J-P (1971c) In vitro excitation of purified membrane fragments by cholinergic agonists. III. Comparison of the dose-response curves to decamethonium with the corresponding binding curves of decamethonium to the cholinergic receptor. J Membr Biol 6:58–80

    Google Scholar 

  • Katz B (1966) Nerve, muscle, and synapse. McGraw-Hill, New York

    Google Scholar 

  • Katz B (1969) The release of neural transmitter substances. Liverpool University Press, Liverpool

    Google Scholar 

  • Katz B, Miledi R (1970) Membrane noise produced by acetylcholine. Nature 226:962–963

    Google Scholar 

  • Katz B, Miledi R (1972) The statistical nature of the acetylcholine potential and its molecular components. J Physiol (Lond) 224:665–669

    Google Scholar 

  • Katz B, Miledi R (1977) Transmitter leakage from motor nerve endings. Proc R Soc Lond (Biol) 196:59–72

    Google Scholar 

  • Katz B, Thesleff S (1957) A study of the desensitization produced by acetylcholine at the motor end-plate. J Physiol (Lond) 138:63–80

    Google Scholar 

  • Keynes RD, Martins-Ferreira H (1953) Membrane potentials in the electroplates of the electric eel. J Physiol (Lond) 119:315–351

    Google Scholar 

  • Kim PS (1980) Acetylcholine-receptor-rich electroplax membrane vesicles: identification and characterization of membrane properties that interfere with measurements of receptor-mediated ion flux. AB Honors Thesis, Cornell University

    Google Scholar 

  • Kim PS, Hess GP (1981) Acetylcholine-receptor-controlled ion flux in electroplax membrane vesicles: identification and characterization of membrane properties that affect ion flux measurements. J Membr Biol 58:203–211

    Google Scholar 

  • Kurzmack M, Verjovski-Almeida S, Inesi G (1977) Detection of an initial burst of Ca2+ translocation in sarcoplasma reticulum. Biochem Biophys Res Commun 78:772–776

    Google Scholar 

  • Lehninger AL (1964) The mitochondrion. Benjamin, New York

    Google Scholar 

  • Lee CY (1972) Chemistry and pharmacology of polypeptide toxins in snake venoms. Annu Rev Pharmacol 12:265–286

    Google Scholar 

  • Leprince P (1981) Characterization of the reaction of α-bungarotoxin with acetylcholine receptors in Torpedo californica and Electrophorus electricus membrane preparations. MS Thesis, Cornell University

    Google Scholar 

  • Leprince P, Noble RL, Hess GP (1981) Comparison of the interactions of a specific neurotoxin (α-bungarotoxin) with the acetylcholine receptor in Torpedo californica and Electrophorus electricus membrane preparations. Biochemistry 20:5565–5570

    Google Scholar 

  • Lindstrom J, Patrick J (1974) Purification of the acetylcholine receptor by affinity chromatography. In: Synaptic transmission and nerve interaction. Raven, New York, pp 191–216

    Google Scholar 

  • Lymn RW, Taylor EW (1970) Transient state phosphate production in the hydrolysis of nucleoside triphosphate by myosin. Biochemistry 9:2975–2983

    Google Scholar 

  • Martonosi A, Lawinska E, Oliver M (1974) Elementary processes in the hydrolysis of ATP by sarcoplasmic reticulum membranes. Ann NY Acad Sci 227:549–567

    Google Scholar 

  • McNamee MG, McConnell HM (1973) Transmembrane potentials and phospholipid flip-flop in excitable membrane vesicles. Biochemistry 12:2951–2958

    Google Scholar 

  • Miller DL, Moore H-PH, Hartig PR, Raftery MA (1978) Fast cation flux from Torpedo californica membrane preparations: implications for a functional role for acetylcholine receptor dimers. Biochem Biophys Res Comm 85:632–640

    Google Scholar 

  • Moore H-PH, Raftery MA (1980) Direct spectroscopic studies of cation translocation by Torpedo acetylcholine receptor on a time scale of physiological relevance. Proc Natl Acad Sci USA 77:4509–4513

    Google Scholar 

  • Nachmansohn D (1955) Metabolism and function of the nerve cell. Harvey Lect 49:57–99

    Google Scholar 

  • Nachmansohn D, Neumann E (1975) Chemical and molecular basis of nerve activity. Academic, New York

    Google Scholar 

  • Neher E, Sakmann B (1976) Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260:779–802

    Google Scholar 

  • Neher E, Stevens CF (1977) Conductance fluctuations and ionic pores in membranes. Annu Rev Biophys Bioeng 6:345–381

    Google Scholar 

  • Neubig RR, Cohen JB (1980) Permeability control by cholinergic receptors in Torpedo postsynaptic membranes: agonist dose-response relations measured at second and millisecond times. Biochemistry 19:2770–2779

    Google Scholar 

  • Neubig RR, Boyd ND, Cohen JB (1982) Conformations of Torpedo acetylcholine receptor associated with ion transport and desensitization. Biochemistry 21:3460–3467

    Google Scholar 

  • Passow H (1969) Ion permeability of erythrocyte ghosts. In: Passow H, Stampli R (eds) Laboratory techniques in membrane biophysics. Springer, Berlin Heidelberg New York, p 21

    Google Scholar 

  • Podleski TR, Bartels E (1963) Difference between tetracaine and d-tubocurarine in the competition with carbamoylcholine. Biochem Biophys Acta 75:387–396

    Google Scholar 

  • Popot JL, Sugiyama H, Changeux J-P (1974) Démonstration de la sensibilisation pharmacologique des récepturs de l'acétylcholine in vitro avec des fragments de membrane excitable de torpille. CR Acad Sci (D) Paris 279:1721–1724

    Google Scholar 

  • Popot J-L, Sugiyama H, Changeux J-P (1976) Studies on the electrogenic action of acetylcholine with Torpedo marmorata electric organ. II. The permeability response of the receptor-rich membrane fragments to cholinergic agonists in vitro. J Mol Biol 106:469–483

    Google Scholar 

  • Racker E (ed) (1970) Membranes of mitochondria and chloroplasts. Van Nostrand-Reinhold, New York

    Google Scholar 

  • Ramseyer GO, Morrison GH, Aoshima H, Hess GP (1981) Vidicon flame emission spectroscopy of Li+, Na+, and K+ fluxes in Electrophorus electricus membrane vesicles. Anal Biochem 115:34–46

    Google Scholar 

  • Rang HP (1974) Acetylcholine receptors. Q Rev Biophys 7:283–399

    Google Scholar 

  • Roughton FJW, Chance B (1963) In: Friess SL, Lewis ES, Weissberger A (eds) Technique of organic chemistry, 2nd edn. Wiley, New York

    Google Scholar 

  • Sachs AB (1982) The acetylcholine receptor: characterization of α-bungarotoxin sites in Electrophorus electricus membrane preparations, development of fluorescent quenching techniques to measure ion flux, and the effects of phencyclidine on the receptor in living nerve cells. AB Honors Thesis, Cornell University

    Google Scholar 

  • Sachs AB, Lenchitz B, Noble RL, Hess GP (1982) A new method for large scale preparation of membrane vesicles which are selectively permeable to specific ions: acetylcholine-receptor-containing vesicles. Anal Biochem 124:185–190

    Google Scholar 

  • Sakmann B, Adams PR (1978) In: Jacob J (ed) Advances pharmacology and therapeutics. Pergamon, Oxford, pp 81–90

    Google Scholar 

  • Sakmann B, Patlack J, Neher E (1980) Single acetylcholine-activated channels show burst kinetics in the presence of desensitizing agonist concentrations. Nature 286:71–73

    Google Scholar 

  • Schoffeniels E, Nachmansohn (1957) An isolated electroplax preparation. II. Improved preparation for studying ion flux. Biochim Biophys Acta 26:585–596

    Google Scholar 

  • Sheridan RE, Lester HA (1977) Rates and equilibria at the acetylcholine receptor of Electrophorus electroplax. A study of neurally evoked postsynaptic currents and of voltage-jump relaxations. J Gen Physiol 70:187–219

    Google Scholar 

  • Sugiyama H, Popot JL, Cohen JB, Weber M, Changeux J-P (1975) In: Sund H, Blauer G (eds) Protein-ligand interactions. deGruyter, Berlin, pp 289–305

    Google Scholar 

  • Sumida M, Wang T, Mandel F, Froehlich JP, Schwartz A (1978) Transient kinetics of Ca2+ transport of sarcoplasmic reticulum. J Biol Chem 253:8772–8777

    Google Scholar 

  • Thayer WS, Hinkle PC (1975) Kinetics of adenosine triphosphate synthesis in bovine heart submitochondrial particles. J Biol Chem 250:5336–5342

    Google Scholar 

  • Toor HL (1975) The non-premixed reaction A+B products. In: Brodkey RS (ed) Turbulence in mixing operations. Academic, New York, p 121

    Google Scholar 

  • Verjovski-Almeida, Inesi G (1979) Fast kinetic evidence for an activating effect of ATP on the Ca2+ transport sarcoplasmic reticulum ATPase. J Biol Chem 254:18–21

    Google Scholar 

  • Walker JW, McNamee MG, Pasquale E, Cash DJ, Hess GP (1981) Acetylcholine receptor inactivation in Torpedo californica electroplax membrane vesicles. Detection of two processes in the millisecond and second time regions. Biochem Biophys Res Comm 100:86–90

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag

About this chapter

Cite this chapter

Cash, D.J., Aoshima, H., Pasquale, E.B., Hess, G.P. (1985). Acetylcholine-receptor-mediated ion fluxes in Electrophorus electricus and Torpedo California membrane vesicles. In: Reviews of Physiology, Biochemistry and Pharmacology, Volume 102. Reviews of Physiology, Biochemistry and Pharmacology, vol 102. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0034085

Download citation

  • DOI: https://doi.org/10.1007/BFb0034085

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-15300-9

  • Online ISBN: 978-3-540-39417-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics