Advertisement

Simultaneous individual recordings from many cerebral neurons: Techniques and results

  • Jürgen Krüger
Chapter
Part of the Reviews of Physiology, Biochemistry and Pharmacology book series (volume 98)

Keywords

Visual Cortex Spike Train Ocular Dominance Common Input Cerebral Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abeles M (1982) Local cortical circuits. In: Braitenberg V (ed) Studies of brain function, vol 6. Springer, Berlin Heidelberg New YorkGoogle Scholar
  2. Abeles M (1983) The quantification and graphic display of correlations among three spike trains. IEEE Trans Biomed Eng 30:235–238PubMedGoogle Scholar
  3. Abeles M, Goldstein MH Jr (1977) Multispike train analysis. Proc IEEE 65:762–773Google Scholar
  4. Adrian ED, Matthews BHC (1934) The interpretation of potential waves in the cortex. J Physiol (Lond) 81:440–471Google Scholar
  5. Allum JHJ, Hepp-Reymond MC, Gysin R (1982) Cross-correlation analysis of interneuronal connectivity in the motor cortex of the monkey. Brain Res 231:325–334CrossRefPubMedGoogle Scholar
  6. Amari S, Arbib MA (eds) (1982) Competition and cooperation in neural nets. Springer, Berlin Heidelberg New York (Lect notes in biomath, vol 45)Google Scholar
  7. Amassian VE, Berlin L, Macy J Jr, Waller HJ (1959) II. Simultaneous recording of the activity of several individual cortical neurons. Trans NY Acad Sci 21:395–405Google Scholar
  8. Arnett DW (1975) Correlation analysis of units recorded in the cat dorsal lateral geniculate nucleus. Exp Brain Res 24:111–130CrossRefPubMedGoogle Scholar
  9. Arvanitaki A (1942) Interactions électriques entre deux cellules nerveuses contiguës. Arch Int Physiol 52:381–407Google Scholar
  10. Bach M (1981) Untersuchungen zur Wechselwirkungzwischen Nervenzellen im visuellen Cortex mit Vielfach-Mikroelektroden. Thesis, University of FreiburgGoogle Scholar
  11. Bach M, Krüger J (1980) Monkey visual cortex: Discharge patterns revealed by simultaneous recording with a thirtyfold multi-microelectrode. Pfluegers Arch [Suppl] 384:R24Google Scholar
  12. Bantli H (1972) Multi-electrode analysis of field potentials in the turtle cerebellum: an electrophysiological method for monitoring continuous spatial parameters. Brain Res 44:676–679CrossRefPubMedGoogle Scholar
  13. Barna JS, Arezzo JC, Vaughan HJ Jr (1981) A new multielectrode array for the simultaneous recording of field potentials and unit activity. Electroencephalogr Clin Neurophysiol 52:494–496CrossRefPubMedGoogle Scholar
  14. Baumgarten R von, Schaefer KP (1957) Kopplungsvorgänge an benachbarten Nervenzellen im Hirnstamm und im motorischen Cortex der Katze. Pfluegers Arch 265:264–275CrossRefGoogle Scholar
  15. Békésy G von (1974) Introduction. In: Keidel WD, Neff WD (eds) Auditory system. Anatomy, physiology (ear). Springer, Berlin Heidelberg New York, pp 1–8 (Handbook of sensory physiology, vol 5/1)Google Scholar
  16. Blum B, Feldman B (1965) A micro-drive for the independent manipulation of four microelectrodes. IEEE Trans Biomed Eng 12:121–122PubMedGoogle Scholar
  17. Bogdanov AV, Galashina AG (1981) Comparative study of interneuronal relations in neighbouring microareas of the cerebral cortex in untrained alert cats. Zh Vyssh Nerv Deiat 31:121–128PubMedGoogle Scholar
  18. Braitenberg V (1978) Cortical architectonics: general and areal. In: Brazier MAB, Petsche H (eds) Architectonics of the cerebral cortex. Raven Press, New York, pp 443–465Google Scholar
  19. Buchwald JS, Holstein SB, Weber DS (1973) Multiple unit recording: technique, interpretation, and experimental applications. In: Thompson RF, Patterson MM (eds) Bioelectric recording techniques, part A. Academic Press, New York, pp 201–242Google Scholar
  20. Burns BD, Webb AC (1979) The correlation between discharge times of neighbouring neurons in isolated cerebral cortex. Proc Roy Soc Lond [Biol] 203:347–360Google Scholar
  21. Cleland BG, Dubin MW, Levick WR (1971) Simultaneous recording of input and output of lateral geniculate neurones. Nature (New Biol) 231:191–192Google Scholar
  22. Creutzfeldt OD, Jung R (1961) Neuronal discharge in the cat's motor cortex during sleep and arousal. In: Wolstenholme GEW, O'Connor M (eds) The nature of sleep. Churchill, London, pp 131–170Google Scholar
  23. Creutzfeldt OD, Meisch JJ (1963) Changes of cortical neuronal activity and EEG during hypoglycemia. Electroencephalogr Clin Neurophysiol [Suppl] 24:158–171Google Scholar
  24. Creutzfeldt OD, Hellweg FC, Schreiner C (1980) Thalamocortical transformation of responses to complex auditory stimuli. Exp Brain Res 39:87–104CrossRefPubMedGoogle Scholar
  25. Curtis DR, Eccles RM (1958) The excitation of Renshaw cells by pharmacological agents applied electrophoretically. J Physiol (Lond) 141:435–445PubMedGoogle Scholar
  26. Dickson JW, Gerstein GL (1974) Interaction between neurons in the auditory cortex of the cat. J Neurophysiol 37:1239–1261PubMedGoogle Scholar
  27. Evarts EV (1968) A technique for recording activity of subcortical neurons in moving animals. Electroencephalogr Clin Neurophysiol 24:83–86CrossRefPubMedGoogle Scholar
  28. Friedman DH (1968) Detection of signals by template matching. Johns Hopkins Press, BaltimoreGoogle Scholar
  29. Gasanov UG, Galashina AG, Bogdanov AV (1980) A study of neuron systems activity in learning. In: Thompson RF, Hicks LH, Shvyrkov VB (eds) Neural mechanisms of goal-directed behavior and learning. Academic Press, New York, pp 341–352Google Scholar
  30. Gerstein GL, Clark WA (1964) Simultaneous study of firing patterns in several neurons. Science 143:1325–1327Google Scholar
  31. Gerstein GL, Michalski A (1981) Firing synchrony in a neural group: putative sensory code. In: Szekely G et al. (eds) Neural communication and control. Pergamon Press, Oxford, pp 93–102 (Adv Physiol Sci, vol 30)Google Scholar
  32. Gerstein GL, Perkel DH (1972) Mutual temporal relationships among neuronal spike trains. Biophys J 12:453–473PubMedGoogle Scholar
  33. Gerstein GL, Perkel DH, Subramanian KN (1978) Identification of functionally related neural assemblies. Brain Res 140:43–62PubMedGoogle Scholar
  34. Gilbert CD, Kelly JP (1975) The projection of cells in different layers of the cat's visual cortex. J Comp Neurol 163:81–106CrossRefPubMedGoogle Scholar
  35. Griffith JS, Horn G (1963) Functional coupling between cells in the visual cortex of the unrestrained cat. Nature (Lond) 199:876, 893–895PubMedGoogle Scholar
  36. Grinvald A, Cohen LB, Lesher S, Boyle MB (1981) Simultaneous optical monitoring of activity of many neurons in invertebrate ganglion using a 124-element photodiode array. J Neurophysiol 45:829–840PubMedGoogle Scholar
  37. Gross GW (1979) Simultaneous single unit recording in vitro with a photoetched laser deinsulated gold multimicroelectrode surface. IEEE Trans Biomed Eng 26:273–278PubMedGoogle Scholar
  38. Gross GW, Lucas JH (1982) Long-term monitoring of spontaneous single unit activity from neuronal monolayer networks cultured on photoetched multielectrode surfaces. In PressGoogle Scholar
  39. Gross GW, Rieske E, Kreutzberg GW, Meyer A (1977) A new fixed-array multi-microelectrode system designed for long-term monitoring of extracellular single unit neuronal activity in vitro. Neurosci Lett 6:101–106CrossRefGoogle Scholar
  40. Grover FS, Buchwald JS (1970) Correlations of cell size with amplitude of background fast activity in specific brain nuclei. J Neurophysiol 33:160–171PubMedGoogle Scholar
  41. Grünthaler KH, Nixdorf J, Rochow H (1969) Eine neue Umformtechnik für spröde Metalle und Legierungen. Metall 23:310–314Google Scholar
  42. Hanna GR, Johnson RN (1968) A rapid and simple method for the fabrication of arrays of recording electrodes. Electroencephalogr Clin Neurophysiol 25:284–286CrossRefPubMedGoogle Scholar
  43. Hayek FA (1952) The sensory order — an inquiry into the foundations of theoretical psychology. University of Chicago Press, ChicagoGoogle Scholar
  44. Hebb DO (1949) The organization of behaviour — A neuropsychological theory. Wiley, New YorkGoogle Scholar
  45. Heierli P, Ribaupierre F de, Toros A, Ribaupierre Y de (1981) Functional organization of the medial geniculate body studied by simultaneous recordings of single unit pairs. In: Syka J, Aitkin L (eds) Neuronal mechanisms of hearing. Plenum Press, New York, pp 183–186Google Scholar
  46. Hess R, Negishi K, Creutzfeldt O (1975) The horizontal spread of intracortical inhibition in the visual cortex. Exp Brain Res 22:415–419CrossRefGoogle Scholar
  47. Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J Physiol (Lond) 160:106–154PubMedGoogle Scholar
  48. Humphrey DR (1970) A chronically implantable multiple microelectrode system with independent control of electrode positions. Electroencephalogr Clin Neurophysiol 29:616–620CrossRefPubMedGoogle Scholar
  49. Jacobi K, Krüger J (1983) Monkey visual cortex: Cross-correlations between spike trains recorded by 30 microelectrodes. Naunyn Schmiedebergs Arch Pharmacol [Suppl] 322:R100Google Scholar
  50. Jobling DT, Smith JB, Wheal HV (1981) Active microelectrode array to record from the mammalian central nervous system in vitro. Med Biol Eng Comput 19:553–560PubMedGoogle Scholar
  51. Jung R (1961) Korrelationen von Neuronentätigkeit und Sehen. In: Jung R, Kornhuber HH (eds) Neurophysiologie und Psychophysik des visuellen Systems. Springer, Berlin Göttingen Heidelberg, pp 410–435Google Scholar
  52. Kimura M, Tanaka K, Toyama K (1976) Interneuronal connectivity between visual cortical neurones of the cat as studied by cross-correlation analysis of their impulse discharges. Brain Res 118:329–333CrossRefPubMedGoogle Scholar
  53. Knox CK (1981) Detection of neuronal interactions using correlation analysis. Trends Neurosci 4:222–224CrossRefGoogle Scholar
  54. Knox CK, Poppele RE (1977) Correlation analysis of stimulus-evoked changes in excitability of spontaneously firing neurons. J Neurophysiol 40:616–625PubMedGoogle Scholar
  55. Kohonen T (1977) Associative memory. Springer, Berlin Heidelberg New YorkGoogle Scholar
  56. Krüger J (1982a) Cat visual cortex: Synaptic relations revealed by multi-microelectrode recordings. Pfluegers Arch [Suppl] 392:R50Google Scholar
  57. Krüger J (1982b) Neurophysiologische und biophysikalische Systemanalyse der visuellen Informationsverarbeitung. Internal report, FreiburgGoogle Scholar
  58. Krüger J (1982c) A 12-fold microelectrode for recording from vertically aligned cortical neurones. J Neurosci Meth 6:347–350CrossRefGoogle Scholar
  59. Krüger J, Bach M (1980) A 30 fold multi-microelectrode for simultaneous single unit recording. Pfluegers Arch [Suppl] 384:R33Google Scholar
  60. Krüger J, Bach M (1981) Simultaneous recording with 30 microelectrodes in monkey visual cortex. Exp Brain Res 41:191–194PubMedGoogle Scholar
  61. Krüger J, Bach M (1982) Independent systems of orientation columns in upper and lower layers of monkey visual cortex. Neurosci Lett 31:225–230CrossRefPubMedGoogle Scholar
  62. Krüger J, Fischer B (1983) Colour columns and colour areas. In: Mollon JD, Sharpe LT (eds) Colour vision: Physiology and psychophysics. Academic Press, London New YorkGoogle Scholar
  63. Kuperstein M, Whittington D (1979) Parallel recording of single unit activity in vivo. Soc Neurosci 5:495 (abstract)Google Scholar
  64. Kuperstein M, Whittington DA (1981) A practical 24 channel microelectrode for neural recording in vivo. IEEE Trans Biomed Eng BME 28:288–293Google Scholar
  65. Lee BB, Cleland BG, Creutzfeldt OD (1977) The retinal input to cells in area 17 of the cat's cortex. Exp Brain Res 30:527–538CrossRefPubMedGoogle Scholar
  66. Legéndy C (1970) The brain and its information trapping device. In: Rose J (ed) Progress in cybernetics, vol 1. Gordon and Breach, New York, pp 309–388Google Scholar
  67. Lehmann D, Murata K, Koukkou M (1962) Simultane Periodik der Neuronenaktivität in verschiedenen Cortexfeldern der Katze. Naturwissenschaften 49:611–612CrossRefGoogle Scholar
  68. LeVay S, Gilbert CD (1976) Laminar patterns of geniculocortical projection in the cat. Brain Res 113:1–20CrossRefPubMedGoogle Scholar
  69. LeVay S, Sherk H (1981) The visual claustrum of the cat. 1. Structure and connections. J Neurosci 1:956–980PubMedGoogle Scholar
  70. Lilly JC, Cherry RB (1954) Surface movements of click responses from acoustic cerebral cortex of cat: leading and trailing edges of a response figure. J Neurophysiol 17:521–532PubMedGoogle Scholar
  71. Llinas R, Nicholson C, Johnson K (1973) Implantable monolithic wafer recording electrodes for neurophysiology. In: Phillips MI (ed) Brain unit activity during behaviour. Thomas, SpringfieldGoogle Scholar
  72. Loeb GE, Marks WB, Beatty PG (1977) Analysis and microelectronic design of tubular electrode arrays intended for chronic, multiple single-unit recordings from captured nerve fibres. Med Biol Eng Comput 15:195–201PubMedGoogle Scholar
  73. Malsburg C von der (1981) The correlation theory of brain function. Internal report 1981–82 Max-Planck-Institut Biophysikalische Chemie, GöttingenGoogle Scholar
  74. Mannard A, Stein RB, Charles D (1974) Regeneration electrode units: implants for recording from single peripheral nerve fibers in freely moving animals. Science 183:547–549PubMedGoogle Scholar
  75. Marks WB (1965) Some methods of simultaneous multiunit recordings. In: Nye PW (ed) Proc symp information processing in sight sensory systems. California Institute of Technology, Pasadena, pp 200–206Google Scholar
  76. Matthews BHC (1929) Specific nerve impulses. J Physiol (Lond) 67:169–190Google Scholar
  77. Moore GP, Segundo JP, Perkel DH, Levitan H (1970) Statistical signs of synaptic interaction in neurons. Biophys J 10:876–900PubMedGoogle Scholar
  78. Müller-Paschinger IB, Prohaska O, Vollmer R, Petsche H (1979) Histological marking with multiple thin-film electrode probe for intracortical recording. Electroencephalogr Clin Neurophysiol 47:627–628CrossRefPubMedGoogle Scholar
  79. Negishi K, Verzeano M (1961) Recordings of multiple microelectrodes from the lateral geniculate and the visual cortex of the cat. In: Jung R, Kornhuber HH (eds) The visual system: neurophysiology and psychophysics. Springer, Berlin Heidelberg New York, pp 288–295Google Scholar
  80. Noda H, Adey WR (1970) Firing of neuron pairs in cat association cortex during sleep and wakefulness. J Neurophysiol 33:672–684PubMedGoogle Scholar
  81. O'Keefe J, Bouma H (1969) Complex sensory properties of certain amygdala units in the freely moving cat. Exp Neurol 23:384–398CrossRefPubMedGoogle Scholar
  82. Olson CR, Graybiel AM (1980) Sensory maps in the claustrum of the cat. Nature (Lond) 288:479–481CrossRefPubMedGoogle Scholar
  83. Orbach HS, Cohen LB, Grinvald A (1982) Optical monitoring of evoked activity in the visual cortex of the marine rat. Biol Bull 163:389Google Scholar
  84. Palm G (1982) Neural assemblies — an alternative approach to artificial intelligence. In: Braitenberg V (ed) Studies of brain function, vol 17. Springer, Berlin Heidelberg New YorkGoogle Scholar
  85. Palmer C (1976) A microwire technique for long term recording of single units in the brains of unrestrained animals. J Physiol (Lond) 263:99–101 PGoogle Scholar
  86. Perkel DH, Gerstein GL, Moore GP (1967) Neuronal spike trains and stochastic point processes. II. Simultaneous spike trains. Biophys J 7:419–440PubMedGoogle Scholar
  87. Perkel DH, Gerstein GL, Smith MS, Tatton WG (1975) Nerve impulse patterns: a quantitative display technique for three neurons. Brain Res 100:271–296CrossRefPubMedGoogle Scholar
  88. Pickard RS (1979a) A review of printed circuit microelectrodes and their production. J Neurosci Meth 1:301–318CrossRefGoogle Scholar
  89. Pickard RS (1979b) Printed circuit microelectrodes. Trends Neurosci 2:259–261CrossRefGoogle Scholar
  90. Pickard RS, Collins AJ, Joseph PL, Hicks RCJ (1979) A flexible printed circuit probe for electrophysiology. Med Biol Eng Comput 17:261–267PubMedGoogle Scholar
  91. Pine J (1980) Recording action potentials from cultured neurons with extracellular microcircuit electrodes. J Neurosci Meth 2:19–32CrossRefGoogle Scholar
  92. Pochay P, Wise KD, Allard LF, Rutledge LT (1979) A multichannel depth probe fabricated using electron-beam lithography. IEEE Trans Biomed Eng 26:199–206PubMedGoogle Scholar
  93. Prochazka VJ, Kornhuber HH (1973) On-line multi-unit sorting with resolution of superposition signals. Electroencephalogr Clin Neurophysiol 34:91–93CrossRefPubMedGoogle Scholar
  94. Prohaska O, Olcaytug F, Womastek K, Petsche H (1977) A multielectrode for intracortical recordings produced by thin-film technology. Electroencephalogr Clin Neurophysiol 42:421–422CrossRefPubMedGoogle Scholar
  95. Prohaska O, Pacha P, Pfundner P, Petsche H (1979) A 16-fold semi-microelectrode for intracortical recording of field potentials. Electroencephalogr Clin Neurophysiol 47:629–631CrossRefPubMedGoogle Scholar
  96. Rapoport SS, Silkis IG (1981) Joint activity of neighbouring neurones in the cat visual cortex. Zh Vyssh Nerv Deiat 31:812–818PubMedGoogle Scholar
  97. Reitböck H, Werner G (1983) Multi-electrode recording system for the study of spatio-temporal activity patterns of neurons in the central nervous system. Experientia 39:339–342CrossRefPubMedGoogle Scholar
  98. Reitböck H, Adamczak W, Eckhorn R, Muth P, Thielmann R, Thomas U (1981) Multiple single-unit recording. Design and test of a 19-channel micromanipulator and appropriate fiber electrodes. Neurosci Lett [Suppl] 7:181Google Scholar
  99. Renaud LP, Kelly JS (1974) Identification of possible inhibitory neurons in the pericruciate cortex of the cat. Brain Res 79:9–28CrossRefPubMedGoogle Scholar
  100. Rodieck RW (1967) Maintained activity of cat retinal ganglion cells. J Neurophysiol 30:1043–1071PubMedGoogle Scholar
  101. Rosenblatt F (1962) Principles of neurodynamics. Spartan, WashingtonGoogle Scholar
  102. Schneider J, Eckhorn R, Reitböck H (1983) Evaluation of neuronal coupling dynamics. Biol Cybern 46:129–134CrossRefPubMedGoogle Scholar
  103. Sejnowski T (1981) Skeleton filters in the brain. In: Hinton GE, Anderson JA (eds) Parallel models of associate memory. Erlbaum, HillsdaleGoogle Scholar
  104. Sherrington C (1941) Man on his nature. The Gifford Lectures Edinburgh 1937–38. University Press, CambridgeGoogle Scholar
  105. Simon W (1965) The real-time sorting of neuro-electric action potentials in multiple unit studies. Electroencephalogr Clin Neurophysiol 18:192–195CrossRefPubMedGoogle Scholar
  106. Stålberg E, Trontelj J (1979) Single fibre electromyography. Mirvalle Press, Old Working SurreyGoogle Scholar
  107. Starr A, Wise KD, Csongradi J (1973) An evaluation of photoengraved microelectrodes for extracellular single-unit recordings. IEEE Trans Biomed Eng 20:291–293PubMedGoogle Scholar
  108. Stevens JK, Gerstein GL (1976) Interactions between cat lateral geniculate neurons. J Neurophysiol 39:239–256PubMedGoogle Scholar
  109. Strumwasser F (1958) Long-term recording from single neurons in brain of unrestrained animals. Science 127:469–470PubMedGoogle Scholar
  110. Tan Ü, Marangoz C, Şenyuva F (1979) Antidromic response latency distribution of cat pyramidal tract cells: Three groups with respective extracellular spike properties. Exp Neurol 65:573–586CrossRefPubMedGoogle Scholar
  111. Taylor GF (1924) A method of drawing metallic filaments and a discussion of their properties and uses. Physical Rev 23:655–660CrossRefGoogle Scholar
  112. Terzuolo CA, Araki T (1961) An analysis of intra-versus extracellular potential changes associated with activity of single spinal motoneurons. Ann NY Acad Sci 94:547–558PubMedGoogle Scholar
  113. Thomas CA Jr, Springer PA, Loeb GE, Berwald-Netter Y, Okun CM (1972) A miniature microelectrode array to monitor the bioelectric activity of cultured cells. Exp Cell Res 74:61–66CrossRefPubMedGoogle Scholar
  114. Toyama K, Kimura M, Tanaka K (1981a) Cross-correlation analysis of interneuronal connectivity in cat visual cortex. J Neurophysiol 46:191–201PubMedGoogle Scholar
  115. Toyama K, Kimura M, Tanaka K (1981b) Organization of cat visual cortex as investigated by cross-correlation technique. J Neurophysiol 46:202–214PubMedGoogle Scholar
  116. Tsumoto T, Creutzfeldt OD, Legéndy CR (1978) Functional organization of the corticofugal system from visual cortex to lateral geniculate nucleus in the cat. (With an appendix on geniculo-cortical monosynaptic connections). Exp Brain Res 32:345–364CrossRefPubMedGoogle Scholar
  117. Verzeano M (1956) Activity of cerebral neurons in the transition from wakefulness to sleep. Science 124:366–367PubMedGoogle Scholar
  118. Verzeano M, Negishi K (1960) Neuronal activity in cortical and thalamic networks. J Gen Physiol 43:177–195CrossRefPubMedGoogle Scholar
  119. Verzeano M, Negishi K (1961) Neuronal activity in wakefulness and sleep. In: Wolstenholme GEW, O'Connor M (eds) The nature of sleep. Churchill, London, pp 108–130Google Scholar
  120. Webb AC (1977) Can one detect the presence of orientation columns in the visual cortex of the conscious mobile cat? Proc Int Union of Psychol Sci (Paris) 13:110Google Scholar
  121. Wiens T, Gerstein GL (1975) Cross connections among crayfish claw efferents. Neurophysiol 38:909–921Google Scholar
  122. Wise KD, Angell JB (1975) A low-capacitance multielectrode probe for use in extracellular neurophysiology. IEEE Trans Biomed Eng 22:212–219PubMedGoogle Scholar
  123. Wise KD, Angell JB, Starr A (1970) An integrated circuit approach to extracellular microelectrodes. IEE Trans Biomed Eng 17:238–246Google Scholar
  124. Wheeler BC, Heetderks WJ (1982) A comparison of techniques for classification of multiple neural signals. IEEE Trans Biomed Eng 29:752–759PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Jürgen Krüger
    • 1
  1. 1.Neurologische UniversitätsklinikFreiburgFederal Republic of Germany

Personalised recommendations