The modular architectonic principle of neural centers

  • János Szentágothai
Part of the Reviews of Physiology, Biochemistry and Pharmacology book series (volume 98)


Purkinje Cell Dorsal Horn Pyramidal Cell Cerebellar Cortex Basket Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aitkin LM, Webster WR (1971) Tonotopic organization in the medial geniculate body of the cat. Brain Res 26:402–405CrossRefPubMedGoogle Scholar
  2. Braitenberg V, Atwood RP (1958) Morphological observations on the cerebellar cortex. J Comp Neurol 109:1–34CrossRefPubMedGoogle Scholar
  3. Brand B, Dahl A-L, Mugnaini E (1976) The length of parallel fibers in the cat cerebellar cortex. An experimental light and electron microscopic study. Exp Brain Res 26:39–58PubMedGoogle Scholar
  4. Brodal A (1957) The reticular formation of the brain stem. Anatomical aspects and functional correlations. Boyd, EdinburghGoogle Scholar
  5. Brodal A (1975) The “wiring patterns” of the brain: neuroanatomical experiences and their implications for general view of the organization of the brain. In: Worden FG, Swazey JP, Adelman G (eds) The neurosciences: paths of discovery. MIT Press, Cambridge, Mass, pp 123–240Google Scholar
  6. Brown AG, Rose PK, Snow PJ (1977) The morphology of hair follicle afferent fibre collaterals in the spinal cord of the cat. J Physiol (Lond) 272:779–797PubMedGoogle Scholar
  7. Brown AG, Rose PK, Snow PJ (1978) Morphology and organization of axon collaterals from afferent fibres of slowly adapting type I units in cat spinal cord. J Physiol (Lond) 277:15–27PubMedGoogle Scholar
  8. Brown AG, Fyffe REW, Noble R (1980) Projections from Pacinian corpuscles and rapidly adapting mechanoreceptors of glabrous skin to the cat's spinal cord. J Physiol (Lond) 307:385–400PubMedGoogle Scholar
  9. Brown AG, Fyffe REW, Rose PK, Snow PJ (1981) Spinal cord collaterals from axons of type II slowly adapting units in the cat. J Physiol (Lond) 316:469–480PubMedGoogle Scholar
  10. Campbell AW (1905) Histological studies on the localization of cerebral function. Cambridge University Press, CambridgeGoogle Scholar
  11. Colonnier ML (1966) The structural design of the neocortex. In: Eccles JC (ed) Brain and conscious experience. Springer, Berlin Heidelberg New YorkGoogle Scholar
  12. Colonnier M (1968) Synaptic patterns on different cell types in the different laminae of the cat visual cortex. An electron microscope study. Brain Res 9:268–287CrossRefPubMedGoogle Scholar
  13. Dyatchkova LN, Hámori J (1967) Formation of cerebellar glomeruli of rat in ontogenesis. Electron microscopic study (in Russian). Arkh Anat Gistol Embriol 52:30–39PubMedGoogle Scholar
  14. Eccles JC (1978) An instruction-selection hypothesis of cerebral learning. In: Buser P, Buser A (eds) Cerebral correlates of conscious experience. Elsevier, AmsterdamGoogle Scholar
  15. Eccles JC (1979) The human mystery. Springer, Berlin Heidelberg New YorkGoogle Scholar
  16. Eccles JC (1980) The human psyche. Springer, Berlin Heidelberg New YorkGoogle Scholar
  17. Eccles JC (1981) The modular operation of the cerebral neocortex considered as the material basis of mental events. Neuroscience 6:1939–1956CrossRefGoogle Scholar
  18. Eccles JC, Ito M, Szentágothai J (1967) The cerebellum as a neuronal machine. Springer, Berlin Heidelberg New YorkGoogle Scholar
  19. Edelman GM (1978) Group selection and phasic reentrant signaling: a theory of higher brain function. In: Schmitt FO (ed) The mindful brain. MIT Press, Cambridge, Mass, pp 51–100Google Scholar
  20. Gallatz K, Palkovits M, Szentágothai J (to be published) Nerve cell number in the human cerebral cortex.Google Scholar
  21. Gilbert ChD, Wiesel TN (1979) Morphology and intracortical projection of functionally characterized neurons in the cat visual cortex. Nature 280:120–125CrossRefPubMedGoogle Scholar
  22. Globus A, Scheibel AB (1966) Loss of dendritic spines as an index of presynaptic terminal patterns. Nature 213:463Google Scholar
  23. Goldman PS, Nauta WJH (1977) Columnar distribution of corticocortical fibers in the frontal association, limbic and motor cortex of the developing Rhesus monkey. Brain Res 122:393–413CrossRefPubMedGoogle Scholar
  24. Grant G, Landgren S, Silfvenius H (1975) Columnar distribution of U-fibres from the postcruciate cerebral projection area of the cat's group I-muscle afferents. Exp Brain Res 24:57–74CrossRefPubMedGoogle Scholar
  25. Gray EG (1959) Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study. J Anat 93:420–433PubMedGoogle Scholar
  26. Gray EG (1961) The granule cells, mossy synapses and Purkinje spine synapses of the cerebellum: light and electron microscope observations. J Anat 95:345–356PubMedGoogle Scholar
  27. Hámori J (1974) Experimental study of the formation of interneuronal contacts (in Hungarian). MTA Biol Oszt Közl 17:59–102Google Scholar
  28. Hámori J (1981) Synaptic input to the axon hillock initial segment of inhibitory interneurons in the cerebellar cortex of the rat. Cell Tissue Res 217:553–562CrossRefPubMedGoogle Scholar
  29. Hámori J, Dyatchkova LN (1964) Electron microscopic studies on developmental differentiation of ciliary ganglion synapses in the chick. Acta Biol Acad Sci Hung 15:213–230PubMedGoogle Scholar
  30. Hámori J, Somogyi J (to be published) Differentiation of cerebellar mossy fiber synapses in the rat: a quantitative electron microscopic study. Brain ResGoogle Scholar
  31. Holländer H (1970) The projection from the visual cortex to the lateral geniculate body (LGB). Exp Brain Res 10:219–235CrossRefPubMedGoogle Scholar
  32. Horton JC, Hubel DH (1981) Regular patchy distribution of cytochrome oxidase staining in primary visual cortex of macaque monkey. Nature 292:762–764CrossRefPubMedGoogle Scholar
  33. Hubel DH, Wiesel TN (1959) Receptive fields of single neurones in the cat's striate cortex. J Physiol (Lond) 148:574–591PubMedGoogle Scholar
  34. Hubel DH, Wiesel TN (1972) Laminar and columnar distribution of geniculo-cortical fibers in the macaque monkey. J Comp Neurol 146:421–450CrossRefPubMedGoogle Scholar
  35. Hubel DH, Wiesel TN, Stryker MP (1978) Anatomical demonstration of orientation columns in macaque monkey. J Comp Neurol 177:361–379CrossRefPubMedGoogle Scholar
  36. Ito M, Hongo T, Yoshida M, Okada Y, Obata K (1974) Antidromic and trans-synaptic activation of Deiters' neurones induced from the spinal cord. Jpn J Physiol 14:638–658Google Scholar
  37. Jansen J, Brodal A (1958) Das Kleinhirn. In: Oksche A, Vollrath L (eds) Handbuch der mikroskopischen Anatomie des Menschen, vol 4, pt 8. Springer, Berlin Göttingen HeidelbergGoogle Scholar
  38. Jones EG (1975) Varieties and distribution of non-pyramidal cells in the somatic sensory cortex of the squirrel monkey. J Comp Neurol 160:205–268CrossRefPubMedGoogle Scholar
  39. Kievit J, Kuypers HGJM (1977) Organization of the thalamo-cortical connexions of the frontal lobe in the Rhesus monkey. Exp Brain Res 29:299–322CrossRefPubMedGoogle Scholar
  40. Kirsche W, David H, Winkelmann E (1965) Elektronenmikroskopische Untersuchungen an synaptischen Formationen im Cortex cerebelli von Rattus rattus norvegicus, Berkenhoot. Z Mikrosk Anat Forsch 72:49–80Google Scholar
  41. Koerber HR, Brown PB (1980) Projection of two hindlimb cutaneous nerves to cat dorsal horn. J Neurophysiol 44:259–269PubMedGoogle Scholar
  42. Krieg WS (1932) The hypothalamus of the albino rat. J Comp Neurol 55:208–223CrossRefGoogle Scholar
  43. Leontovich TA, Zhukova GP (1963) The specificity of the neuronal structure and topography of the reticular formation in the brain and spinal cord of carnivora. J Comp Neurol 121:347–380CrossRefPubMedGoogle Scholar
  44. Light AR, Perl ER (1979) Spinal termination of functionally identified primary afferent neurons with slowly conducting myelinated fibers. J Comp Neurol 186:133–150CrossRefPubMedGoogle Scholar
  45. Llinás R (1982) General discussion: Radial connectivity in the cerebellar cortex: a novel view regarding the functional organization of the molecular layer. In: Palay S, Chan-Palay V (eds) The cerebellum — new vistas. Springer, Berlin Heidelberg New York, pp 189–194Google Scholar
  46. Lorento de Nó R (1938) The cerebral cortex: Architecture, intracortical connections and motor projections. In: Fulton JF (ed) Physiology of the nervous system. Oxford University Press, London, pp 291–321Google Scholar
  47. Lund JS (1973) Organization of neurons in the visual cortex area 17 of the monkey (Macaca mulatta). J Comp Neurol 147:455–496CrossRefPubMedGoogle Scholar
  48. Majorossy K, Kiss A (1976) Specific patterns of neuron arrangement and of synaptic articulation in the medial geniculate body. Exp Brain Res 26:1–17PubMedGoogle Scholar
  49. Majorossy K, Réthelyi M (1968) Synaptic architecture of the Medial-Geniculate-Body (Ventral Division). Exp Brain Res 6:306–323CrossRefPubMedGoogle Scholar
  50. Makara GB, Palkovits M, Szentágothai J (1980) The endocrine hypothalamus and the hormonal response to stress. In: Selye H (ed) Selye's guide to stress research, vol 1. Van Nostrand Reinhold, New York, pp 280–337Google Scholar
  51. Marin-Padilla M (1970) Prenatal and early postnatal ontogenesis of the human motor cortex: a Golgi study, II. The basket-pyramidal system. Brain Res 23:185–192CrossRefPubMedGoogle Scholar
  52. Martin KAC, Somogyi P, Whitteridge D (1983) Physiological and morphological properties of identified basket cells in the cat's visual cortex. Exp Brain Res 50:193–200CrossRefPubMedGoogle Scholar
  53. Millhouse OE (1979) A Golgi anatomy of the rodent hypothalamus. In: Morgane PJ, Panksepp J (eds) Handbook of the hypothalamus, vol 1. Dekker, New York, pp 221–265Google Scholar
  54. Morest DK (1971) Dendrodendritic synapses of cells that have axons: The fine structure of the Golgi type II cell in the medial geniculate body of the cat. Z Anat Entwicklungsgesch 133:216–246CrossRefPubMedGoogle Scholar
  55. Morgan C, Nadelhaft I, De Groat WC (1981) The distribution of visceral primary afferents from the pelvic nerve to Lissauer's tract and the spinal gray matter and its relationship to the sacral parasympathetic nucleus. J Comp Neurol 201:415–440CrossRefPubMedGoogle Scholar
  56. Morgane PJ, Panksepp J (1979) Anatomoy of the hypothalamus. In: Morgane PJ, Panksepp J (eds) Handbook of the hypothalamus, vol 1. Dekker, New YorkGoogle Scholar
  57. Mountcastle VB (1957) Modalities and topographic properties of single neurons of cat's sensory cortex. J Neurophysiol 20:408–434PubMedGoogle Scholar
  58. Mountcastle VB (1978) An organizing principle for cerebral function: the unit module and the distributed system. In: Schmitt FO (ed) The mindful brain. MIT Press, Cambridge, Mass, pp 7–50Google Scholar
  59. O'Leary JL (1940) A structural analysis of the lateral geniculate nucleus of the cat. J Comp Neurol 73:405–430CrossRefGoogle Scholar
  60. Oscarsson O (1969) The sagittal organization of the cerebellar anterior lobe as revealed by the projection patterns of the climbing fiber system. In: Llinás R (ed) Neurobiology of cerebellar evolution and development. AMA-ERF, Chicago, pp 525–537Google Scholar
  61. Oscarsson O (1973) Functional organization of spinocerebellar paths. In: Iggo A (ed) Somatosensory system. Springer, Berlin Heidelberg New York, pp 339–380 (Handbook of sensory physiology, vol 2)Google Scholar
  62. Oscarsson O (1979) Functional units of the cerebellum — sagittal zones and microzones. Trends in Neurosciences 2:143–145CrossRefGoogle Scholar
  63. Palkovits M, Záborszky L (1979) Neural connections of the hypothalamus. In: Morgane PJ, Panksepp J (eds) Handbook of the hypothalamus, vol 1. Anatomy of the hypothalamus. Dekker, New York Basel, pp 379–509Google Scholar
  64. Palkovits M, Magyar P, Szentágothai J (1971) Quantitative histological analysis of the cerebellar cortex in the cat. III. Structural organization of the molecular layer. Brain Res 34:1–18CrossRefPubMedGoogle Scholar
  65. Pellionisz A, Llinás R (1979) Brain modeling by tensor network theory and computer simulation. The cerebellum: distributed processor for predictive coordination. Neuroscience 4:323–348CrossRefPubMedGoogle Scholar
  66. Pellionisz A, Szentágothai J (1974) Dynamic single unit simulation of a realistic cerebellar network model. II. Purkinje cell activity within the basic circuit and modified by inhibitory systems. Brain Res 68:19–40CrossRefPubMedGoogle Scholar
  67. Peters A, Proskauer CC, Ribak CE (1972) Chandelier cells in rat visual cortex. J Comp Neurol 206:397–416CrossRefGoogle Scholar
  68. Polyakov GI (1953) On the fine structural characteristics of the human cerebral cortex and in interneuronal functional interaction (in Russian). Arkh Anat Gistol Embriol 30:48–60Google Scholar
  69. Popper KR, Eccles JC (1977) The self and its brain. Springer, Berlin Heidelberg New YorkGoogle Scholar
  70. Rakic P (1971) Neuron-glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electronmicroscopic study in Macacus rhesus. J Comp Neurol 141:283–312CrossRefPubMedGoogle Scholar
  71. Ramón y Cajal S (1888) Estructura de los centros nerviosos de las aves. Rev Trim Histol Norm Pathol 1 and 2Google Scholar
  72. Ramón y Cajal S (1899) Estudio sobrala cortezza cerebral humana. Rev Trim Microscopia 4:1–63Google Scholar
  73. Ramón y Cajal S (1909) Histologie du système nerveux de l'homme et des vertébrés I. Maloine, ParisGoogle Scholar
  74. Ramón y Cajal S (1911) Histologie du système nerveux de l'homme et des vertébrés II. Maloine, ParisGoogle Scholar
  75. Ramón y Cajal S (1935) Die Neuronenlehre. In: Bumke O, Foerster O (eds) Handbuch der Neurologie I. Anatomie. Springer, Berlin, pp 887–994Google Scholar
  76. Ramón-Molines E, Nauta WJH (1966) The isodendritic core of the brain stem. J Comp Neurol 126:311–335CrossRefPubMedGoogle Scholar
  77. Réthelyi M (1968) The Golgi architecture of Clarke's column. Acta Morph Acad Sci Hung 16:311–330Google Scholar
  78. Réthelyi M (1972) Cell and neuropil architecture of teh intermediolateral (sympathetic) nucleus of cat spinal cord. Brain Res 46:203–213CrossRefPubMedGoogle Scholar
  79. Réthelyi M (1976) Central core in the spinal grey matter. Acta Morph Acad Sci Hung 24:64–70Google Scholar
  80. Réthelyi M (1977) Preterminal and terminal axon arborizations in the substantia gelatinosa of cat's spinal cord. J Comp Neurol 172:511–528CrossRefPubMedGoogle Scholar
  81. Réthelyi M (1981) The modular construction of the neuropil in the substantia gelatinosa of the cat's spinal cord. A computer aided analysis of Golgi specimens. Acta Morph Acad Sci Hung 29:1–18Google Scholar
  82. Réthelyi M, Capowski JJ (1977) The terminal arborization pattern of primary afferent fibers in the substantia gelatinosa of the spinal cord in the cat. J Physiol (Paris) 73:269–277Google Scholar
  83. Réthelyi M, Fockter V (1982) The fiber architecture of the rat median eminence with some accidental observations on the significance of tanycyte processes. Acta Biol Acad Sci Hung 33:289–300PubMedGoogle Scholar
  84. Réthelyi M, Szentágothai J (1969) The large synaptic complexes of the substantia gelatinosa. Exp Brain Res 7:258–274CrossRefPubMedGoogle Scholar
  85. Réthelyi M, Trevino DL, Perl ER (1979) Distribution of primary afferent fibers within the sacrococcygeal dorsal horn: an autoradiographic study. J Comp Neurol 185:603–622CrossRefPubMedGoogle Scholar
  86. Réthelyi M, Light AR, Perl ER (1982) Complexes formed by functionally defined primary afferent units with fine myelinated fibers. J Comp Neurol 207:381–393CrossRefPubMedGoogle Scholar
  87. Rexed B (1954) A cytoarchitectonic atlas of the spinal cord in the cat. J Comp Neurol 100:297–379CrossRefPubMedGoogle Scholar
  88. Ribak CE (1978) Aspinous and sparsely-spinous stellate neurons in the visual cortex of rats contain glutamic acid decarboxylase. J Neurocytol 7:461–479CrossRefPubMedGoogle Scholar
  89. Rockel AJ, Hiorns RW, Powell TPS (1974) Numbers of neurons through full depth of neocortex. J Anat 118:371Google Scholar
  90. Sanderson KJ, Bishop PO, Darian-Smith I (1971) The properties of the binocular fields of lateral geniculate nucleus. Exp Brain Res 13:178–207PubMedGoogle Scholar
  91. Scheibel ME, Scheibel AB (1958) Structural substrates for integrative patterns in the brain stem reticular core. In: Jasper HH, Proctor LD, Knighton RS, Noshay WC, Costello RT (eds) Reticular formation of the brain. Little Brown, Boston, Mass, pp 31–55Google Scholar
  92. Scheibel ME, Scheibel AB (1968) Terminal axon patterns in cat spinal cord. II. The dorsal horn. Brain Res 9:32–58CrossRefPubMedGoogle Scholar
  93. Scheibel ME, Scheibel AB (1969) Terminal patterns in cat spinal cord. III. Primary afferent collaterals. Brain Res 13:417–443CrossRefPubMedGoogle Scholar
  94. Scheibel ME, Scheibel AB (1970) Elementary processes in selected thalamic and cortical subsystems — the structural substrates. In: Schmitt FO (ed) The neurosciences second study program. The Fockefeller University Press, New York, pp 443–457Google Scholar
  95. Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The (14C)deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure and normal values in the conscious and anesthetized albino rat. J Neurochem 28:897–916PubMedGoogle Scholar
  96. Somogyi P (1977) A specific axo-axonal interneuron in the visual cortex of the rat. Brain Res 136:345–350CrossRefPubMedGoogle Scholar
  97. Somogyi P (1978) The study of Golgi stained cells and of experimental degeneration under the electron microscope: A direct method for the identification in the visual cortex of three successive links in a neuron chain. Neuroscience 3:167–180CrossRefPubMedGoogle Scholar
  98. Somogyi P (1979) An interneuron making synapses specifically on the axonal initial segment (AIS) of pyramidal cells in the cerebral cortex of the cat. J Physiol (Lond) 296:18–19Google Scholar
  99. Somogyi P, Cowey A (1981) Combined Golgi and electron microscopic study of the synapses formed by double bouquet cells in the visual cortex of the cat and monkey. J Comp Neurol 195:547–566CrossRefPubMedGoogle Scholar
  100. Somogyi P, Cowey A, Halász N, Freund TF (1981) Vertical organization of neurons accumulating 3H-GABA in the visual cortex of the rhesus monkey. Nature 294:761–763CrossRefPubMedGoogle Scholar
  101. Somogyi P, Freund T, Cowey A (1982) The axo-axonic interneuron in the cerebral cortex of the rat, cat and monkey. Neuroscience 7:2577–2608CrossRefPubMedGoogle Scholar
  102. Somogyi P, Cowey A, Kisvárday ZF, Freund TF, Szentágothai J (1983) Retrograde transport of 3H-GABA reveals specific interlaminar connections in the striate cortex of monkey. Proc Natl Acad Sci USA 80:2385–2389PubMedGoogle Scholar
  103. Somogyi P, Smith AD, Nunzi MG, Gorio A, Takagi H, Wu J-Y (to be published) Glutamate decarboxylase immunoreactive neurons in the hippocampus of the cat. Distribution of immunoreactive synaptic terminals with special reference to the axon initial segment of pyramidal neurons. J NeuroscienceGoogle Scholar
  104. Szentágothai J (1962) On the synaptology of the cerebral cortex (in Russian). In: Sarkissov SA (ed) Structure and function of the nervous system. Medgiz, Moscow, pp 6–14Google Scholar
  105. Szentágothai J (1963a) Ujabb adatok a synapsis funkcionális anatómiájához (New data on the functional anatomoy of synapses) (in Hungarian). Magy Tud Akad Biol Oszt Közl 6:217–227Google Scholar
  106. Szentágothai J (1963b) The structure of the synapse in the lateral geniculate body. Acta Anat (Basel) 55:166–185PubMedGoogle Scholar
  107. Szentágothai J (1964a) Neuronal and synaptic arrangement in the substantia gelatinosa Rolandi. J Comp Neurol 122:219–239CrossRefPubMedGoogle Scholar
  108. Szentágothai J (1964b) Propriospinal pathways and their synapses. In: Eccles JC, Schadé JP (eds) Progress in brain research, vol 11. Elsevier, Amsterdam, pp 155–177Google Scholar
  109. Szentágothai J (1964c) The parvicellular neurosecretory system. In: Bargmann W, Schadé JP (eds) Progress in brain research, vol 5. Elsevier, Amsterdam, pp 135–146Google Scholar
  110. Szentagothai J (1964d) The structure of the autonomic interneuronal synapse. Acta Neuroveg 26:338–359CrossRefGoogle Scholar
  111. Szentágothai J (1965a) The use of degeneration methods in the investigations of short neuronal connections. In: Singer M, Schadé JP (eds) Progress in brain research, vol 14. Elsevier, Amsterdam, pp 1–32Google Scholar
  112. Szentágothai J (1965b) Complex synapses. In: Bargmann W (ed) Aus der Werkstatt der Anatomen. Thieme, Stuttgart, pp 147–167Google Scholar
  113. Szentágothai J (1967a) Models of specific neuron arrays in thalamic relay nuclei. Acta Morph Acad Sci Hung 15:113–124Google Scholar
  114. Szentágothai J (1967b) The anatomy of complex integrative units in the nervous system. In: Lissak K (ed) Recent developments in neurobiology in Hungary, vol 1. Akad Kiadó, Budapest, pp 9–45Google Scholar
  115. Szentágothai J (1969) Architecture of the cerebral cortex. In: Japser HH, Ward AA, Pope A (eds) Basic mechanisms of the epilepsies. Little Bronw, Boston, pp 13–28Google Scholar
  116. Szentágothai J (1970a) Les circuits neuronaux de l'écorce cérébrale. Bull Mem Acad R Med Belg 10:475–492Google Scholar
  117. Szentágothai J (1970b) Glomerular synapses, complex synaptic arrangements and their operational significance. In: Schmitt FO (ed) The neurosciences, second study program. Rockefeller University Press, New York, pp 427–443Google Scholar
  118. Szentágothai J (1971) Some geometrical aspects of the neocortical neuropil. Acta Biol Acad Sci Hung 22:107–124CrossRefPubMedGoogle Scholar
  119. Szentágothai J (1973a) Neuronal and synaptic architecture of the lateral geniculate nucleus. In: Jung R (ed) Central processing of visual information, B. Visual centers in the brain. Springer, Berlin Heidelberg New York, pp 141–176 (Handbook of sensory physiology, vol 7, pt 3)Google Scholar
  120. Szentágothai J (1973b) Synaptology of the visual cortex. In: Jung R (ed) Central processing of visual information, B. Visual centers in the brain. Springer, Berlin Heidelberg New York, pp 269–324 (Handbook of sensory physiology, vol 7, pt 3)Google Scholar
  121. Szentágothai J (1975) The “module concept” in cerebral cortex architecture. Brain Res 95:475–496CrossRefPubMedGoogle Scholar
  122. Szentágothai J (1976) Die Neuronenschaltungen der Großhirnrinde. Verh Anat Ges 70:187–215PubMedGoogle Scholar
  123. Szentágothai J (1978a) The neuron network of the cerebral cortex: a functional interpretation. The Ferrier Lecture 1977. Proc R Soc Lond [Biol] 201:219–248Google Scholar
  124. Szentágothai J (1978b) Specificity versus (quasi-) randomness in cortical connectivity. In: Brazier MAB, Petsche H (eds) Architectonics of the cerebral cortex. Raven Press, New York, pp 77–97Google Scholar
  125. Szentágothai J (1978c) The local neuronal apparatus of the cerebral cortex. In: Buser PA, Rougeul-Buser A (eds) Cerebral correlates of conscious experience. North Holland, Amsterdam New York Oxford, pp 131–138Google Scholar
  126. Szentágothai J (1979) Local neuron circuits of the neocortex. In: Schmitt FO, Worden FG (eds) The neurosciences fourth study program. MIT Press, Cambridge, Mass, London, pp 399–415Google Scholar
  127. Szentágothai J (1981) Principles of neural organization. In: Szentágothai J, Palkovits M, Hámori J (eds) Advances in physiological sciences, vol 1. Regulatory functions of the CNS principles of motion and organization. Pergamon Press — Akadémiai Kiadó, Oxford Budapest, pp 1–16Google Scholar
  128. Szentágothai J, Albert Á (1955) The synaptology of Clarke's column. Acta Morph Acad Sci Hung 5:43–51Google Scholar
  129. Szentágothai J, Arbib MA (1974) Conceptual models of neural organization. Neurosci Res Program Bull 12:307–510Google Scholar
  130. Szentágothai J, Réthelyi M (1973) Cyto-and neuropil architecture of the spinal cord. In: Desmedt JE (ed) Human reflexes, pathophysiology of motor systems, methodology of human reflexes. New developments in electromyography and clinical neurophysiology, vol 3. Karger, Basel, pp 20–37Google Scholar
  131. Szentágothai J, Flerkó B, Mess B, Halász B (1962) The hypothalamic control of the anterior pituitary. Akad Kiadó, BudapestGoogle Scholar
  132. Szentágothai J, Hámori J, Tömböl T (1966) Degeneration and electron microscope analysis of the synaptic glomeruli in the lateral geniculate body. Exp Brain Res 2:283–301CrossRefPubMedGoogle Scholar
  133. Szentágothai J, Flerkó B, Mess B, Halász B (1968) Hypothalamic control of the anterior pituitary, 3rd edn. Akad Kiado, BudapestGoogle Scholar
  134. Tello F (1904) Disposición macroscópica y estructura del cuerpo geniculado externo. Trab Lab Invest Biol Univ Madrid 3:39–62Google Scholar
  135. Tömböl T, Madarász M, Somogyi G, Hajdu F, Gerle J (1978) Quantitative histological studies on the lateral geniculate nucleus in the cat. IV. Numerical aspects of the transfer from retinal fibers to cortical relay. J Hirnforsch 19:203–212PubMedGoogle Scholar
  136. Valverde F (1967) Apical dendritic spines of the visual cortex and light deprivation in the mouse. Exp Brain Res 3:337–352CrossRefPubMedGoogle Scholar
  137. Van der Loos H (1976) Barreloids in mouse somatosensory thalamus. Neurosci Lett 2:1–6CrossRefGoogle Scholar
  138. Voogd J (1964) The cerebellum of the cat. Thesis. University of Leiden. Van Gorcum, AssenGoogle Scholar
  139. Voogd J (1969) The importance of fiber connections in the comparative anatomy of the mammalian cerebellum. In: Llinas R (ed) Neurobiology of cerebellar evolution and development. AMA-ERF, Chicago, pp 493–541Google Scholar
  140. Voogd J (1982) The olivocerebellar projection in the cat. In: Palay S, Chan-Palay V (eds) The cerebellum: new vistas. Springer, Berlin Heidelberg New York, pp 134–160Google Scholar
  141. Werner G (1970) The topology of the body representation in the somatic afferent pathway. In: Schmitt FO (ed) The neurosciences, second study program. Rockefeller University Press, New York, pp 605–617Google Scholar
  142. Wolff JR, Eins S, Holzgraefe M, Záborszky L (1981) The temporo-spatial course of degeneration after cutting corticocortical connections in adult rats. Cell Tissue Res 214:303–321CrossRefPubMedGoogle Scholar
  143. Wong-Riley M (1979) Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry. Brain Res 171:11–28CrossRefPubMedGoogle Scholar
  144. Woolsey TA, Van der Loos H (1970) The structural organization of layer IV in the somatosensory region (S 1) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res 17:205–242CrossRefPubMedGoogle Scholar
  145. Zhukova GP (1958) On the question of the neuronal architecture of the spinal cord (in Russian). Arkh Anat Gistol Embriol 35:43–51PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • János Szentágothai
    • 1
  1. 1.1st Department of AnatomySemmelweis University Medical SchoolBudapestHungary

Personalised recommendations