Advertisement

An object calculus with algebraic rewriting

  • Adriana Compagnoni
  • Maribel Fernández
Paradigm Integration
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1292)

Abstract

In trying to use Abadi and Cardelli's object calculi as a foundation for a programming language the addition of algebraic data types arises naturally. This paper defines such an extension, shows a motivating example, and explores the new calculi by establishing properties such as Church-Rosser, subject reduction and uniqueness of types.

Keywords

Object calculi Rewriting Combined calculi Type systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Abadi and L. Cardelli. A theory of primitive objects. Untyped and first-order systems. In Theoretical Aspects of Computer Software, pages 296–320. Springer-Verlag, 1994.Google Scholar
  2. 2.
    M. Abadi and L. Cardelli. A theory of primitive objects. Untyped and first-order systems. Information and Computation, 125(2):78–102, 1996.Google Scholar
  3. 3.
    Val Breazu-Tannen and Jean Gallier. Polymorphic rewriting conserves algebraic strong normalization. Theoretical Computer Science, 83(1), 1991.Google Scholar
  4. 4.
    Val Breazu-Tannen and Jean Gallier. Polymorphic rewriting conserves algebraic confluence. Information and Computation, 82:3–28, 1992.Google Scholar
  5. 5.
    A. Gordon and G. Rees. Bisimilarity for a first-order calculus of objects with subtyping. In Proc. 23rd ACM Symposium on Principles of Programming Languages, St. Petersburg Beach, Florida, 1996.Google Scholar
  6. 6.
    R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Journal of the ACM, 40(1):143–184, 1993.Google Scholar
  7. 7.
    J.-P. Jouannaud and M. Okada. Executable higher-order algebraic specification languages. In Proc. 6th Annual IEEE Symposium on Logic in Computer Science, pages 350–361, 1991.Google Scholar
  8. 8.
    J. McKinna and R. Pollack. Pure type systems formalized. In J-F Groote and M Bezem, editors, Proc. of the International Conference on Typed Lambda Calculi and Applications, volume 664 of Lecture Notes in Computer Science. Springer-Verlag, 1993.Google Scholar
  9. 9.
    J. Mitchell, F. Honsell, and K. Fisher. A lambda calculus of objects and method specialization. Nordic Journal of Computing, 1(1):3–37, 1994.Google Scholar
  10. 10.
    F. Müller. Confluence of the lambda-calculus with left-linear algebraic rewriting. Information Processing Letters, 41:293–299, 1992.Google Scholar
  11. 11.
    J. Palsberg. Efficient inference of object types. In Proc. 9th Annual IEEE Symposium on Logic in Computer Science, Paris, France, 1994.Google Scholar
  12. 12.
    B. K. Rosen. Tree-manipulating systems and Church-Rosser theorems. Journal of the ACM, 20:160–187, 1973.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Adriana Compagnoni
    • 1
  • Maribel Fernández
    • 2
  1. 1.Department of Computer ScienceUniversity of EdinburghEdinburghUK
  2. 2.LIENS (CNRS URA 1327) École Normale SupérieureParisFrance

Personalised recommendations