Advertisement

Incremental volume rendereing algorithm for interactive 3D ultrasound imaging

  • R Ohbuchi
  • H Fuchs
9. Image Quality, Display And Interaction
Part of the Lecture Notes in Computer Science book series (LNCS, volume 511)

Abstract

This paper describes a medical 3D ultrasound imaging system that incrementally acquires and visualizes a 3D volume from a series of 2D images. The system acquires the image from a conventional B-mode 2D echography scanner, whose scanhead is attached to a mechanical tracking arm with three degrees of freedom. It reconstructs a stream of 2D images with their locations and orientations into a 3D array of regularly spaced samples, to be rendered by a modified front-to-back image-order volume rendering algorithm. Visualization is done so that each incoming 2D image slice promptly affects the rendering result. This paper concentrates on the incremental volume rendering algorithm that takes advantage of the incremental scanning to reduce image generation time per each input image slice. We describe a new fast ray-clipping scheme called D-buffer algorithm that is based on the Z-buffer algorithm. It is followed by another speedup scheme called hierarchical ray caching, and a method to efficiently integrate geometric objects with volume data in image space.

Keywords

3D ultrasound echography Ray-casting 3D imaging Z-buffer algorithm D-buffer algorithm hierarchical ray-caching 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atherton, P.R. (1981). A Method of Interactive Visualization of CAD Surface Models on a Color Video Display. ACM Computer Graphics, 15(3): 279–287.Google Scholar
  2. Badouel, D., Bouatouch, K., Priol, T., (1990). Ray Tracing on Distributed Memory Parallel Computers: strategies for distributing computation and data (Technical Report No. 508). Institut De Recherche en Informatique et Systèmes Aléatoires, Universitaire de Beaulieu, France.Google Scholar
  3. Billion, A.C. (1990) Personal Communication.Google Scholar
  4. Brinkley, J.F., Moritz, W.E., and Baker, D.W. (1978). Ultrasonic Three-Dimensional Imaging and Volume From a Series of Arbitrary Sector Scans. Ultrasound in Med. & Biol., 4: 317–327.Google Scholar
  5. Carpenter, L. (1984). The A-buffer, an Antializsed Hidden Surface Method. ACM Computer Graphics, 18(3): 103–108.Google Scholar
  6. Cullip, T. (1990) Personal Communication.Google Scholar
  7. Cyrus, M., and Beck, J. (1978). Generalized Two-and Three-Dimensional Clipping. Computers and Graphics, 3(1): 23–28.Google Scholar
  8. Ebert, S.D., and Parent, R.E. (1990). Rendering and Animation of Gaseous Phenomena by Combining Volume and Scanline A-buffer Technique. ACM Computer Graphics, 24(4): 357–366.Google Scholar
  9. Foley, J.D., van Dam, A., Feiner, S. K., and Hughes, J. F. (1990). Computer Graphics Principle and Practice (2'nd Edition, ed.). Addison-Wesley,.Google Scholar
  10. Franke, R. (1982). Scattered Data Interpolation: Tests of Some Methods. Mathematics of Computation, 38(157): 181–200.Google Scholar
  11. Fuchs, H., Poulton, J., Eyles, J., Greer, T., Goldfeather, J., Ellsworth, D., Molner, S., and Israel, L. (1989). Pixel Planes 5: A Heterogeneous Multiprocessor Graphics System Using Processor-Enhanced Memories. Computer Graphics, 23(3): 79–88.Google Scholar
  12. Garrity, M.P. (1990). Raytracing Irregular Volume Data. ACM Computer Graphics, 24(5): 35–40.Google Scholar
  13. Ghosh, A., Nanda, C.N., and Maurer, G. (1982). Three-Dimensional Reconstruction of Echo-Cardiographics Images Using The Rotation Method. Ultrasound in Med. & Biol., 8(6): 655–661.Google Scholar
  14. Glassner, A. (Ed.). (1990). Graphics Gems. Academic Press, San Diego.Google Scholar
  15. Hottier, F. (1989) Personal Communication.Google Scholar
  16. Lalouche, R.C., Bickmore, D., Tessler, F., Mankovich, H.K., and Kangaraloo, H. (1989). Three-dimensional reconstruction of ultrasound images. In: SPIE 89, Medical Imaging (pp. 59–66).Google Scholar
  17. Levoy, M. (1988). Display of Surface from Volume Data. IEEE CG&A, 8(5): 29–37.Google Scholar
  18. Levoy, M. (1989) Display of Surfaces From Volume Data. Ph.D Thesis, University of North Carolina at Chapel Hill, Computer Science Department.Google Scholar
  19. Levoy, M. (1990). A Hybrid Ray Tracer for Rendering Polygon and Volume Data. IEEE CG&A, 10(2): 33–40.Google Scholar
  20. Lin, W., Pizer, S.M., and Johnson, V.E. (1991). Surface Estimation in Ultrasound Images. In: Information Processing in Medical Imaging 1991 (IPMI'91), (In this volume). Wye, U.K., Springer-Verlag, Heidelberg.Google Scholar
  21. McCann, H.A., Sharp, J.S., Kinter, T.M., McEwan, C.N., Barillot, C., and Greenleaf, J.F. (1988). Multidimensional Ultrasonic Imaging for Cardiology. Proc.IEEE, 76(9): 1063–1073.Google Scholar
  22. Mills, P.H., and Fuchs, H. (1990). 3D Ultrasound Display Using Optical Tracking. In: 1'st Conference on Visualization for Biomedical Computing, (pp. 490–497). Atlanta, GA, IEEE Computer Society.Google Scholar
  23. Miyazawa, T. (1991). A high-speed integrated rendering for interpreting multiple variable 3D data. In: 1991 SPIE/SPSE Symposium, Extracting Meanging from Complex Data: Processing, Display, Interaction II,. San Jose, CA.Google Scholar
  24. Nakamura, S. (1984). Three-Dimensional Digital Display of Ultrasonograms. IEEE CG&A, 4(5): 36–45.Google Scholar
  25. Neeman, H. (1990). A Decomposition Algorithm for Visualizing Irregular Grids. ACM Computer Graphics, 24(5): 49–56.Google Scholar
  26. Nikravesh, P.E., Skorton, D.J., Chandran, K.B., Attarwala, Y.M., Pandian, N., and Kerber, P.E. (1984). Nikravesh, P.E., Skorton, D.J., Chandran, K.B., Attarwala, Y.M., Pandian, N., and Kerber, P.E. Untrasonic Imaging, 6: 48–59.Google Scholar
  27. Novins, K.L., François, X. S. and Greenberg, D. P. (1990). An Efficient Method for Volume Rendering using Perspective Projection. ACM Computer Graphics, 24(5): 95–102.Google Scholar
  28. Ohbuchi, R., and Fuchs, H. (1990). Incremental 3D Ultrasound Imaging from a 2D Scanner. In: First Conference on Visualization in Biomedical Computing, (pp. 360–367). Atlanta, GA, IEEE.Google Scholar
  29. Raichelen, J.S., Trivedi, S.S., Herman, G.T., Sutton, M.G., and Reichek, N. (1986). Dynamic Three Dimensional Reconstruction of the Left Ventricle From Two-Dimensional Echocardiograms. Journal. Amer. Coll. of Cardiology, 8(2): 364–370.Google Scholar
  30. Sabella, P. (1988). A Rendering Algorithm for Visualizing 3D Scalar Fields. Computer Graphics, 22(4): 51–58.Google Scholar
  31. Shattuck, D.P., Weishenker, M.D., Smith, S.W., and von Ramm, O.T. (1984). Explososcan: A Parallel Processing Technique for High Speed Ultrasound Imaging with Linear Phased Arrays. JASA, 75(4): 1273–1282.Google Scholar
  32. Shirley, P., and Tuchman, A. (1990). A polygonal approximation to direct scalar volume rendering. ACM Computer Graphics, 24(5): 63–70.Google Scholar
  33. Stickels, K.R., and Wann, L.S. (1984). An Analysis of Three-Dimensional Reconstructive Echocardiography. Ultrasound in Med. & Biol., 10(5): 575–580.Google Scholar
  34. Upson, C., and Keeler, M. (1988). VBUFFER: Visible Volume Rendering. ACM Computer Graphics, 22(4): 59–64.Google Scholar
  35. Wilhelms, J., Challinger, J., and Vaziri, A. (1990). Direct Volume Rendering of Curvilinear Volumes. ACM Computer Graphics, 24(5): 41–47.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • R Ohbuchi
    • 1
  • H Fuchs
    • 1
  1. 1.Department of Computer ScienceUniversity of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations