An anatomical-based 3D registration system of multimodality and atlas data in neurosurgery

  • D. Lemoine
  • C. Barillot
  • B. Gibaud
  • E. Pasqualini
3. Multi-Modal Registration
Part of the Lecture Notes in Computer Science book series (LNCS, volume 511)


The knowledge of patient neuro-anatomy is key information, at least in the understanding of the pathological processes and in the elaboration of precise treatment strategies in neurosurgery. In addition to classical radiology systems like angiography, CT scanner or MRI have greatly contributed to the improvement of the patient anatomy investigation. Each examination modality still carries its own information and the need to make a synthesis between them is obvious but still makes different problems hard to solve. There is no unique imaging facility which can bring out the whole set of known anatomical structures, brought together in a neuro-anatomical atlas. Nevertheless, it is very important for the physician to assign location to these structures from the images delivered by the studies. Only an accurate fusion of these data may help the physician to recognize the precise anatomical structures involved in the therapeutic process he has to set up.

The aim of this study is to provide an understanding of heterogeneous data. We propose a method to register multimodality data according to a common referential system called Proportional Squaring. Upon this geometrical basis, the deformation model is built up allowing the transfer of different patient data including the atlas within the same referential.


Image Registration Data Fusion Brain Atlas Multimodality Imaging Stereotactic Neurosurgery Deformation Model MRI CT Angiography 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barillot C. (1988). "Interactive Ray-Tracing for Volume Rendering of Medical Data", INSERM U335, Internal Report.Google Scholar
  2. Barillot C., Lemoine D., Gibaud B., Toulemont P.J. and Scarabin J.M. (1990) "A PC Software Package to Confront Multimodality Images and a Stereotactic Atlas in Neurosurgery", SPIE Vol 1232 Med. Im. IV, pp 188–199.Google Scholar
  3. Bookstein F.L. (1989) “Principal Warps: Thin-Plate Splines and the Decomposition of Deformation” IEEE PAMI Vol.11(6), pp 567–585.Google Scholar
  4. Chen G.T.Y., Kessler M. and Pitluck S. (1985) “Structure Transfer in Three-Dimensional Medical Imaging Studies”, Nat Comput. Graph. Ass., pp 171–175.Google Scholar
  5. Christopher J.H., Pike G.B., Collins D.L. and Peters T.M. (1991) “Three-Dimensional Display of Cortical Anatomy and Vasculare: Magnetic Resonance Angiography Versus Multimodality Integration”, J Digital Im., Vol 4 (1), pp 21–27.Google Scholar
  6. Dann R., Hoford J., Kovacic S., Reivich M. and Bajcsy R. (1988) "Three Dimensional Computerized Brain Atlas for Elastic Matching: Creation and Initial Evaluation", SPIE Med. Im. II, Vol 914, pp 600–608.Google Scholar
  7. Evans A.C., Dai W., Collins L., Neelin P. and Marrett S. (1991) “Warping of a Computerized 3-D Atlas to Match Brain Image Volumes for Quantitative Neuroanatomical and Functional Analysis”, SPIE MI V Vol.1445, (to appear).Google Scholar
  8. Fox P.T., Perlmutter J.S. and Raichle M.E. (1985) “Stereotactic Method of Anatomical Localization for Positron Emission Tomography”, J Comput. Assist. Tomogr., Vol.9, pp 141–153.Google Scholar
  9. Gibaud B., Picand F. et al. (1989) "SIRENE: Design and Evaluation of a PACS Prototype" Proc. of CAR'89, Springler Verlag Ed., pp 484–488.Google Scholar
  10. Le Gall G. (1990) "Informatisation des Données Stéréotaxiques et Dosimétriques pour l'Irradiation de Lésions Cérébrales: une Approche Robotisée", Ph.D. thesis, Université Paul Sabatier, Toulouse, France.Google Scholar
  11. Longuet H.C. and Higgins (1981) "A Computer Algorithm for Reconstructing a Scene from Two Projections", Nature Vol.293, pp 133–135.Google Scholar
  12. Metz C.E. and Fencil L.E. (1989) "Determination of Three-Dimentional Structure in Biplane Radiography without Prior Knowledge of the Relationship between the Two Views: Theory", Med Phys. Vol 16(1), pp 45–51.Google Scholar
  13. Naidich T.P., Daniels D.L., Pech P. et al. (1986) "Anterior Commissure: Anatomic-MR Correlation and Use as a Landmark in Three Orthogonal Planes", Radiology, Vol 158 (2).Google Scholar
  14. Robb R.A. and Barillot C. (1989) "Interactive Display and Analysis of 3D Medical Images", IEEE TMI Vol.8(3), pp.217–226.Google Scholar
  15. Seitz R.J., Bohm C., Greitz T., Roland P.E. et al. (1990) “Accuracy and Precision of the Computerized Brain Atlas Programme for Localisation and Quantification in Positron Emission Tomography”, J. Cereb. Blood Flow Metab., Vol. 10(4), pp. 443–457.Google Scholar
  16. Talairach J., Szikla G., Tournoux P. et al. (1967) "Atlas d'Anatomie Stéréotaxique du Télencéphale", Masson Ed., Paris.Google Scholar
  17. Talairach J. and Tournoux P. (1988) "Co-Planar Stereotactic Atlas of the Human Brain", Georg Thieme Verlag Ed., Stuttgart.Google Scholar
  18. Vanier M., Roch Lecours A., Ethier R. et al. (1985) "Proportional Localization System for Anatomical Interpretation of Cerebral Computed Tomograms", J. Comput. Assist. Tomogr., Vol 9(4), pp 715–724.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • D. Lemoine
    • 1
  • C. Barillot
    • 1
  • B. Gibaud
    • 1
  • E. Pasqualini
    • 2
  1. 1.INSERM U-335, Laboratoire SIM, Faculté de MédecineRennes CedexFrance
  2. 2.Service de NeurochirurgieHôpital de PontchailouRennes CedexFrance

Personalised recommendations