Advertisement

Polytopic coverings and robust stability analysis via Lyapunov quadratic forms

  • Francesco Amato
  • Franco Garofalo
  • Luigi Glielmo
Chapter
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 193)

Abstract

In this chapter we have discussed the problem of immersing the image of a given function into a polytope. This has several applications in the field of robust stability analysis of linear systems subject to uncertain time-varying parameters. After a review of the existing literature we have proposed an algorithm which works under quite general assumptions.

Future research will be devoted to extending the class of functions for which the proposed polytopic coverings are applicable.

Keywords

Convex Hull Exponential Stability Robust Stability Stability Margin Robust Stability Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amato, F., Celentano, G., Garofalo, F. 1992, Stability robustness bounds for linear systems subject to slowly-varying uncertainties. Proc American Control Conference, ChicagoGoogle Scholar
  2. Amato, F., Garofalo, F. 1993, A robust stability problem for linear systems subject to time-varying parameters. submitted for publicationGoogle Scholar
  3. Amato, F., Garofalo, F., Glielmo, L., Verde, L. 1993, An algorithm to cover the image of a function with a polytope: applications to robust stability problems. 12th IFAC World Congress, Sydney, AustraliaGoogle Scholar
  4. Anagnost, J. J., Desoer, C. A., Minnichelli, R. J. 1988, Graphical stability robustness tests for linear time-invariant systems: generalizations of Kharitonov's stability theorem. Proc IEEE Conference on Decision and Control, Austin, TexasGoogle Scholar
  5. Barmish, B.R. 1988, New tools for robustness analysis. Proc IEEE Conference on Decision and Control, Austin, TexasGoogle Scholar
  6. Bartlett, A. C., Hollot, C. V., Lin, H. 1988, Root locations of an entire polytope of polynomials: it suffices to check the edges. Mathematics of Control, Signals, and Systems 1, 67–71Google Scholar
  7. Boyd, S., Yang, Q. 1989, Structured and simultaneous Lyapunov functions for system stability problems. International Journal of Control 49, 2215–2240Google Scholar
  8. Corless, M., Da, D. 1988, New criteria for robust stability. International Workshop on Robustness in Identification and Control, Turin, ItalyGoogle Scholar
  9. De Gaston, R. R. E. 1985, Nonconservative calculation of the multiloop stability margin, Ph.D. Thesis, University of Southern California, CaliforniaGoogle Scholar
  10. De Gaston, R. R. E., Safonov, M. G. 1988, Exact calculation of the multiloop stability margin. IEEE Transactions on Automatic Control AC-33, 156–171Google Scholar
  11. Dorato, P. 1987, Robust control, IEEE Press, New YorkGoogle Scholar
  12. Dorato, P., Yedavalli, R.K. 1990, Recent advances in robust control, IEEE Press, New YorkGoogle Scholar
  13. Garofalo, F., Celentano, G., Glielmo, L. 1993a, Stability robustness of interval matrices via Lyapunov quadratic forms. IEEE Transactions on Automatic Control AC-38, 281–284Google Scholar
  14. Garofalo, F., Glielmo, L., Verde, L. 1993b, Positive definiteness of quadratic forms over polytopes: applications to the robust stability problem. submitted for publicationGoogle Scholar
  15. Graham, A. 1981, Kronecker product and matrix calculus: with applications, Ellis Horwood, ChichesterGoogle Scholar
  16. Horisberger, H. P., Bélanger, P. R. 1976, Regulators for linear time-invariant plants with uncertain parameters. IEEE Transactions on Automatic Control AC-21, 705–708Google Scholar
  17. Kiendl, H. 1985, Totale Stabilitat von linearen regelungssystemen bei ungenau bekannten parametern der regelstrecke. Automatisierungstechnik 33, 379–386Google Scholar
  18. Peña, R. S. S., Sideris, A. 1988, A general program to compute the multivariable stability margin for systems with parametric uncertainty. Proc American Control Conference, Atlanta, GeorgiaGoogle Scholar
  19. Petersen, I.R. 1988, A collection of results on the stability of families of polynomials with multilinear parameter dependence. Technical Report EE8801, University of New South Wales, AustraliaGoogle Scholar
  20. Rockafellar, R. T. 1970, Convex Analysis, Princeton University Press, Princeton, New JerseyGoogle Scholar
  21. Safonov, M. G. 1981, Stability margins of diagonally perturbed multivariables feedback systems. Proc IEEE Conference on Decision and Control, San Diego, CaliforniaGoogle Scholar
  22. Sideris, A. 1989, A polynomial time algorithm for checking the robust stability of a polytope of polynomials. Proc American Control Conference, Pittsburgh, PennsylvaniaGoogle Scholar
  23. Sideris, A., De Gaston, R. R. E. 1986 Multivariable stability margin calculation with uncertain correlated parameters. Proc IEEE Conference on Decision and Control, Athens, GreeceGoogle Scholar
  24. Sideris, A., Peña, R. S. S. 1988, Fast computation of the multivariable stability margin for real interrelated uncertain parameters. Proc American Control Conference, Atlanta, GeorgiaGoogle Scholar
  25. Sideris, A., Peña, R. S. S. 1990, Robustness margin calculation with dynamic and real parametric uncertainties. IEEE Transactions on Automatic Control AC-35, 970–974Google Scholar
  26. Yedavalli, R.K. 1985, Improved measures of stability robustness for linear state space models. IEEE Transactions on Automatic Control AC-30, 557–559Google Scholar
  27. Yedavalli, R.K. 1989, On Measures of stability robustness for linear state space systems with real parameter perturbations: a perspective. Proc American Control Conference, Pittsburgh, PennsylvaniaGoogle Scholar
  28. Zadeh, L. A., Desoer, C. A. 1963, Linear system theory, McGraw-Hill, New YorkGoogle Scholar
  29. Zhou, K., Khargonekar, P.P. 1987, Stability robustness bounds for linear state-space models with structured uncertainty. IEEE Transactions on Automatic Control AC-32, 621–623Google Scholar

Copyright information

© Springer-Verlag London Limited 1994

Authors and Affiliations

  • Francesco Amato
  • Franco Garofalo
  • Luigi Glielmo

There are no affiliations available

Personalised recommendations