Advertisement

Lyapunov stabilization of a class of uncertain affine control systems

  • David P. Goodall
Chapter
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 193)

Keywords

Feedback Control Differential Inclusion Lyapunov Stabilization Uncertain System Maximal Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreini, A., Bacciotti, A., Stefani, G. 1988, Global stabilizability of homogeneous vector fields of odd degree. Systems and Control Letters 10, 251–256Google Scholar
  2. Aubin, J-P., Cellina, A. 1984, Differential inclusions, Springer-Verlag, New York, pp 342Google Scholar
  3. Barmish, B.R., Corless, M., Leitmann, G. 1983, A new class of stabilizing controllers for uncertain dynamical systems. SIAM Journal on Control and Optimization 21, 246–255Google Scholar
  4. Birkhoff, G., Rota, G.-C. 1989, Ordinary differential equations, Wiley, New York, pp 342Google Scholar
  5. Byrnes, C.I., Isidori, A. 1991, Asymptotic stabilization of minimum phase nonlinear systems. IEEE Transactions on Automatic Control 36, 1122–1137Google Scholar
  6. Choquet-Bruhat, Y., DeWitt-Morette, C., Dillard-Bleick, M. 1982, Analysis, manifolds and physics, North-Holland, Amsterdam, pp 630Google Scholar
  7. Corless, M., Leitmann, G. 1981, Continuous state feedback guaranteeing uniform ultimate boundedness for uncertain dynamic systems. IEEE Transactions on Automatic Control AC-26, 1139–1144Google Scholar
  8. Elmali, H., Olgac, N. 1992, Robust output tracking control of nonlinear MIMO systems via sliding mode technique. Automatica 28, 145–151Google Scholar
  9. Filippov, A.F. 1988, Differential equations with discontinuous righthand sides, Reidel, Dordrecht, pp 304Google Scholar
  10. Goodall, D.P. 1989, Deterministic feedback stabilization of uncertain dynamical systems, Ph.D. Thesis, University of Bath, BathGoogle Scholar
  11. Goodall, D.P. 1992a, Lyapunov stabilization of uncertain systems, affine in the control. Proc. IEEE Int. Workshop on Variable Structure and Lyapunov Control of Uncertain Dynamical Systems, Sheffield, 89–94Google Scholar
  12. Goodall, D.P. 1992b, Lyapunov stabilization of a class of uncertain composite systems with nonlinear coupling. Systems Science, to appearGoogle Scholar
  13. Goodall, D.P., Ryan, E.P. 1988, Feedback controlled differential inclusions and stabilization of uncertain dynamical systems. SIAM Journal on Control and Optimization 26, 1431–1441Google Scholar
  14. Goodall, D.P., Ryan, E.P. 1991, Feedback stabilization of a class of nonlinearly coupled uncertain dynamical systems. IMA Journal of Mathematical Control and Information 8, 81–92Google Scholar
  15. Gutman, S. 1979, Uncertain dynamical systems — a Lyapunov min-max approach. IEEE Transactions on Automatic Control AC-24, 437–443Google Scholar
  16. Gutman, S., Palmor, Z. 1982, Properties of min-max controllers in uncertain dynamical systems. SIAM Journal on Control and Optimization 20, 850–861Google Scholar
  17. Hunt, L.R., Su, R., Meyer, G. 1983, Global transformations of nonlinear systems. IEEE Transactions on Automatic Control AC-28, 24–30Google Scholar
  18. Isidori, A. 1989, Nonlinear control systems, Springer-Verlag, Berlin, pp 479Google Scholar
  19. Jurdjevic, V., Quinn, J.P. 1978, Controllability and stability. Journal of Differential Equations 28, 381–389Google Scholar
  20. Kokotovic P.V., Sussmann, H.J. 1989, A positive real condition for global stabilization of nonlinear systems. Systems and Control Letters 13, 125–133Google Scholar
  21. Leitmann, G. 1979, Guaranteed asymptotic stability for some linear systems with bounded uncertainties. ASME Journal of Dynamic Systems, Measurements and Control 101, 212–216Google Scholar
  22. Luk'yanov, A.G., Utkin, V.I. 1981, Methods of reducing equations for dynamic systems to a regular form. Automation and Remote Control 42, 413–420Google Scholar
  23. Nijmeijer, H., van der Schaft, A. 1990, Nonlinear dynamical control systems, Springer-Verlag, New York, pp 467Google Scholar
  24. Ryan, E.P. 1990, Discontinuous feedback and universal adaptive stabilization. in Control of uncertain dynamical systems, eds. Hinrichsen, D., Mårtensson, B., Birkhauser, Boston, 245–258Google Scholar
  25. Ryan, E.P. 1988, Adaptive stabilization of a class of uncertain nonlinear systems: A differential inclusion approach. Systems and Control Letters 10, 95–101Google Scholar
  26. Ryan, E.P., Buckingham, N.J. 1983, On asymptotically stabilizing feedback control of bilinear systems. IEEE Transactions on Automatic Control AC-28, 863–864Google Scholar
  27. Seibert, P., Suarez, R. 1991, Global stabilization of a certain class of nonlinear systems. Systems and Control Letters 16, 17–23Google Scholar
  28. Slemrod, M. 1978, Stabilization of bilinear control systems with applications to nonconservative problems in elasticity. SIAM Journal on Control and Optimization 16, 131–141Google Scholar
  29. Soldatos, A.G., Corless, M. 1991, Stabilizing uncertain systems with bounded control. Dynamics and Control 1, 227–238Google Scholar
  30. Tsinias, J. 1990, Optimal controllers and output feedback stabilization. Systems and Control Letters 15, 277–284Google Scholar
  31. Utkin, V.I. 1992, Sliding modes in control and optimization, Springer-Verlag, Berlin, pp 286Google Scholar
  32. Zinober, A.S.I. 1990, Deterministic control of uncertain systems, Peter Peregrinus, London, pp 362Google Scholar

Copyright information

© Springer-Verlag London Limited 1994

Authors and Affiliations

  • David P. Goodall

There are no affiliations available

Personalised recommendations